将基于核极限学习机的响应面法应用于筒型基础的入土沉放风险评估,以海域1(安装成功)和海域2(安装失败)某风电场6.45 MW筒型基础为研究对象,采用蒙特卡洛抽样法随机生成地勘静力触探(CPT)中的锥尖阻力(qc),并用基于CPT推荐值、最大值的方法预测沉放需要压差,以水泵和水压可提供的最大压差为风险控制标准,得到两个机位入土沉放失效概率,评估两个机位的入土沉放风险。结果表明:土体的空间变异性越大,筒型基础入土沉放风险越大。当土体变异系数CV≤0.3,使用CPT推荐值计算各深度的失效概率均小于10-4时,风险较低,可用于指导施工。
Abstract
The response surface method based on the nuclear limit learning machine is applied to the risk assessment of penetration of the bucket foundation, and the 6.45 MW bucket foundation of a wind farm in the sea area1 (successful installation) and the sea area 2 (installation failure) is the object of the study, and the Montecarlo sampling method is used to randomly generate the cone tip resistance (qs) in the geophysical static sounding (CPT), and the method based on the CPT recommended value and the maximum value is used to predict the sinking required differential pressure, and the maximum differential pressure that can be provided by the pumps is the risk factor. The maximum differential pressure that can be provided is the risk control standard, and the probability of failure of the two machine positions for penetration into soil is obtained to assess the risk of penetration of the two machine positions. The results show that: the greater the spatial variability of the soil body, the greater the probability of the risk of penetration of the bucket foundation. When the coefficient of variation of soil body CV≤0.3, and the failure probability of penetration resistance calculated by using CPT recommended value are less than 10-4, the risk is low and can be used to guide the construction.
关键词
海上风电 /
筒型基础 /
沉放阻力 /
风险分析
Key words
offshore wind power /
bucket foundation /
penetration resistance /
risk analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孟祥传, 刘润, 侯科宇, 等. 海上风电筒型基础沉贯阻力计算黏土强度研究[J]. 岩土工程学报, 2024, 46(增刊1): 97-101.
MENG X C, LIU R, HOU K Y, et al.Clay strength in calculation of penetration resistance of offshore wind bucket foundation[J]. Chinese journal of geotechnical engineering, 2024, 46(Sup 1): 97-101.
[2] 张翊飞. 筒形基础安装失败案例分析[J]. 造船技术, 2014(6): 16-19.
ZHANG Y F.Case analysis of installation failed for bucket foundation[J]. Marine technology, 2014(6): 16-19.
[3] 陈飞. 砂土中海上风机筒型基础沉放过程筒—土作用研究[D]. 天津: 天津大学, 2014.
CHEN F.Research on the soil-skirt interaction of suction buckets for wind turbines during installation in sand[D]. Tianjin: Tianjin University, 2014.
[4] LIU R, MENG X C, LI C F, et al.Suction penetration characteristics and resistance calculation of bucket foundation in sand[J]. Applied ocean research, 2022, 127: 103300.
[5] KOTERAS A K, IBSEN L B.Medium-scale laboratory model of mono-bucket foundation for installation tests in sand[J]. Canadian geotechnical journal, 2019, 56(8): 1142-1153.
[6] 闫澍旺, 霍知亮, 楚剑, 等. 黏土中桶形基础负压下沉阻力及土塞发展试验[J]. 天津大学学报, 2016, 49(10): 1027-1033.
YAN S W, HUO Z L, CHU J, et al.Experiment on penetration resistance and soil plug development during suction caisson penetration in soft clay[J]. Journal of Tianjin University (science and technology), 2016, 49(10): 1027-1033.
[7] 孙宇. 外压载荷下复合材料圆柱壳的缺陷敏感性研究[D]. 大连: 大连理工大学, 2017.
SUN Y.Imperfection sensitivity of composite cylindrical shell under external pressure[D]. Dalian: Dalian University of Technology, 2017.
[8] SUN G D, LIU R, LI Q X, et al.Research on the critical buckling pressure of bucket foundations with inner compartments for offshore wind turbines[J]. Journal of Ocean University of China, 2023, 22(2): 419-428.
[9] 张浦阳, 黄宣旭. 海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4): 1-11.
ZHANG P Y, HUANG X X.Application research on suction bucket foundation for offshore wind power[J]. Southern energy construction, 2018, 5(4): 1-11.
[10] DET NORSKE VERITAS.Geotechnical design and installation of suction anchors in clay[S].
[11] INSTITUTE A P.Geotechnical and foundation design considerations[S]. 2014.
[12] FELD T.Suction buckets: a new innovative foundation concept, applied to offshore wind turbines[D]. Denmark: Aalborg University, 2001.
[13] HOULSBY G T, BYRNE B W.Design procedures for installation of suction caissons in clay and other materials[J]. Geotechnical engineering, 2005, 158(2): 75-82.
[14] ANDERSEN K H, JOSTAD H P, DYVIK R.Penetration resistance of offshore skirted foundations and anchors in dense sand[J]. Journal of geotechnical and geoenvironmental engineering, 2008, 134(1): 106-116.
[15] American Petroleum Institute.Bulletin on stability design of cylindrical sheus[S]. API 2U 2004.
[16] 崔文涛郭小亮. 筒形基础屈曲强度及非线性有限元分析[J]. 江苏船舶, 2016, 33(4): 16-18.
CUI W T,GUO X L.Buckling strength and non-linear finite element analysis of bucket foundation[J]. Jiangsu ship, 2016, 33(4): 16-18.
[17] 王海军, 刘伟, 闫晓荣, 等. 海上风电单筒多舱筒型基础筒体屈曲特性研究[J]. 太阳能学报, 2022, 43(7): 402-408.
WANG H J, LIU W, YAN X R, et al.Research on buckling characteristics of offshore wind power structure supported by single-cylinder multi-cell bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(7): 402-408.
[18] 吴振君. 土体参数空间变异性模拟和土坡可靠度分析方法应用研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2009.
WU Z J.Study on spatial variability simulation of soil properties and practical reliability analysis method of soil slope[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2009.
[19] 李逸凡, 李大勇, 张雨坤, 等. 吸力基础沉贯过程中桶-土界面力学机理研究进展[J]. 防灾减灾工程学报, 2020, 40(5): 828-840.
LI Y F, LI D Y, ZHANG Y K, et al.Review of mechanical mechanism of bucket-soil interface during installation of suction caissons[J]. Journal of disaster prevention and mitigation engineering, 2020, 40(5): 828-840.
[20] 孟祥传, 刘润, 梁超, 等.饱和黏土不排水抗剪强度特性研究[J].土木工程学报, 2024, 57(5): 86-98.
MENG X C, LIU R, LIANG C, et al.Research on undrained shear strength[J]. China civil engineering journal, 2021, 57(5): 86-98.
[21] HOULSBY G T, BYRNE B W.Design procedures for installation of suction caissons in sand[J]. Geotechnical engineering, 2005, 158(3): 135-144.
[22] MENG X C, YANG X, LIANG C, et al.Research on the calculation method of penetration resistance of bucket foundation for offshore wind turbines[J]. Marine structures, 2023, 91: 103474.
[23] DET NORSKE VERITAS.Offshore soil mechanics and geotechnical engineering[S]. 2019.
[24] SENDERS M, RANDOLPH M F.CPT-based method for the installation of suction caissons in sand[J]. Journal of geotechnical and geoenvironmental engineering, 2009, 135(1): 14-25.
[25] 任芳. 基于蒙特卡洛法的边坡可靠度分析[J]. 福建建设科技, 2010(6): 13-14, 10.
REN F.Analysis of slope reliability based on Monte-Carlo method[J]. Fujian construction science & technology, 2010(6): 13-14, 10.
[26] 侯鸽, 蔡鸥, 徐奎, 等. 海上风电筒型基础建造期风险分析研究[J]. 太阳能学报, 2023, 44(1): 156-162.
HOU G, CAI O, XU K, et al.Research on risk analysis of bucket foundation for offshore wind turbine in construction period[J]. Acta energiae solaris sinica, 2023, 44(1): 156-162.
[27] 郭月红, 石艳迟, 许有俊. 基于响应面法分析桥梁结构的可靠度及风险概率预测[J]. 钢结构, 2016, 31(12):33-36.
GUO Y H, SHI Y C, XU Y J.Reliability analysis and risk probability forecast of bridge structure based on the RSM[J]. Steel construction, 2016, 31(12):33-36.
[28] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al.Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[29] 侯鸽. 海上风电筒型基础结构施工风险分析及安全防控研究[D]. 天津: 天津大学, 2023.
HOU G.Risk analysis and safety prevention and control of offshore wind turbine bucket foundation structure construction[D]. Tianjin: Tianjin University, 2023.
基金
国家杰出青年科学基金(51825904); 天津市研究生科研创新项目(2021YJSB132)