基于蛾眼仿生结构的钙钛矿太阳电池表界面光学调控

沈向前, 韩非, 蒋斯涵, 江舟, 周华

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 85-90.

PDF(2470 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2470 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 85-90. DOI: 10.19912/j.0254-0096.tynxb.2023-1404

基于蛾眼仿生结构的钙钛矿太阳电池表界面光学调控

  • 沈向前1, 韩非1, 蒋斯涵1, 江舟1, 周华2
作者信息 +

OPTICAL MODULATION OF SURFACE/INTERFACE OF PEROVSKITE SOLAR CELLS BASED ON MOTH EYE BIO-INSPIRED STRUCTURE

  • Shen Xiangqian1, Han Fei1, Jiang Sihan1, Jiang Zhou1, Zhou Hua2
Author information +
文章历史 +

摘要

采用时域有限差分法(FDTD)和严格耦合波分析(RCWA),系统研究蛾眼仿生结构对钙钛矿太阳电池表面和界面的光学调控特性,同时通过等效介质理论(EMT)分析其中的增强机制。结果表明,蛾眼结构的引入可有效打破材料之间的界面限制,使折射率从突变转向梯度渐变,光波可几乎不受阻碍的穿过两种材料的交界面。经过优化调控,表面和界面的光学损失分别从3.52%和3.30%降到0.08%和0.06%,钙钛矿太阳电池的光电响应性能明显增强,转换效率相比平面电池提升14.93%。

Abstract

The optical control characteristics of biomimetic moth-eye structures on the surface and interface of perovskite solar cells (PSCs) were systematically investigated using the Finite Difference Time Domain (FDTD) method and Rigorous Coupled Wave Analysis (RCWA), with the enhancement mechanisms analyzed through Equivalent Medium Theory (EMT). The results demonstrate that the introduction of moth-eye structures effectively breaks the interface limitations between materials, resulting in the refractive index to shift from adrupt change to gradient change. As a result, optical waves can pass through the interface between the two materials almost unhindered. With optimized regulation, the optical losses of the surface and interface decrease from the original 3.52% and 3.30% to 0.08% and 0.06%, respectively. Consequently, the photoelectric response performance of the cells is significantly enhanced, with an increase in energy conversion efficiency by 14.93% compared to planar cells.

关键词

钙钛矿太阳电池 / 抗反射结构 / 能量转换效率 / 时域有限差分方法

Key words

perovskite solar cells / antireflection coatings / energy conversion efficiency / finite difference time domain method

引用本文

导出引用
沈向前, 韩非, 蒋斯涵, 江舟, 周华. 基于蛾眼仿生结构的钙钛矿太阳电池表界面光学调控[J]. 太阳能学报. 2024, 45(4): 85-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1404
Shen Xiangqian, Han Fei, Jiang Sihan, Jiang Zhou, Zhou Hua. OPTICAL MODULATION OF SURFACE/INTERFACE OF PEROVSKITE SOLAR CELLS BASED ON MOTH EYE BIO-INSPIRED STRUCTURE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 85-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1404
中图分类号: TM914.4   

参考文献

[1] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[2] KIM J Y, LEE J W, JUNG H S, et al.High-efficiency perovskite solar cells[J]. Chemical reviews, 2020, 120(15): 7867-7918.
[3] 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64(3): 145-152.
YAO X, DING Y L, ZHANG X D, et al.A review of the perovskite solar cells[J]. Acta physica sinica, 2015, 64(3): 145-152.
[4] LI N X, NIU X X, CHEN Q, et al.Towards commercialization: the operational stability of perovskite solar cells[J]. Chemical Society Reviews, 2020, 49(22): 8235-8286.
[5] XU C Y, HU W, WANG G, et al.Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells[J]. ACS Nano, 2020, 14(1): 196-203.
[6] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82.
ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82.
[7] PARK J, KIM J, YUN H S, et al.Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 2023, 616: 724-730.
[8] GREEN M A, DUNLOP E D, SIEFER G, et al.Solar cell efficiency tables (version 61)[J]. Progress in photovoltaics, 2023, 31(1): 3-16.
[9] WANG J F, LUO S Q, LIN Y, et al.Templated growth of oriented layered hybrid perovskites on 3D-like perovskites[J]. Nature communications, 2020, 11: 582.
[10] HE L, SU H Z, LI Z P, et al.Multiple function synchronous optimization by PbS quantum dots for highly stable planar perovskite solar cells with efficiency exceeding 23%[J]. Advanced functional materials, 2023, 33(17): 2213963.
[11] CHEN C, ZHENG S J, SONG H W.Photon management to reduce energy loss in perovskite solar cells[J]. Chemical Society Reviews, 2021, 50(12): 7250-7329.
[12] 赵颂, 周华, 王淑英, 等. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计[J]. 物理学报, 2022, 71(3): 330-336.
ZHAO S, ZHOU H, WANG S Y, et al.Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere[J]. Acta physica sinica, 2022, 71(3): 330-336.
[13] DUDEM B, HEO J H, LEEM J W, et al.CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers[J]. Journal of materials chemistry A, 2016, 4(20): 7573-7579.
[14] PEER A, BISWAS R, PARK J M, et al.Light management in perovskite solar cells and organic LEDs with microlens arrays[J]. Optics express, 2017, 25(9): 10704-10709.
[15] SCHMAGER R, HOSSAIN I M, SCHACKMAR F, et al.Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells[J]. Solar energy materials and solar cells, 2019, 201: 110080.
[16] 何鑫, 周伯川, 张耀举, 等. 微米-纳米分层阵列结构减反膜的制备[J]. 太阳能学报, 2021, 42(8): 146-152.
HE X, ZHOU B C, ZHANG Y J, et al.Preparation of micro-nano layered array structure anti-reflection film[J]. Acta energiae solaris sinica, 2021, 42(8): 146-152.
[17] CHOI J S, JANG Y W, KIM U, et al.Optically and mechanically engineered anti-reflective film for highly efficient rigid and flexible perovskite solar cells[J]. Advanced energy materials, 2022, 12(33): 2201520.
[18] 王岩岩, 钱敏, 蒋晓慧, 等. 超薄晶硅太阳电池表面介质纳米结构减反及陷光机理研究[J]. 太阳能学报, 2023, 44(7): 135-140.
WANG Y Y, QIAN M, JIANG X H, et al.Research on antireflection and light trapping properties for dielectric nanostructures on ultrathin crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 135-140.
[19] HAN K, CHANG C H.Numerical modeling of sub-wavelength anti-reflective structures for solar module applications[J]. Nanomaterials, 2014, 4(1): 87-128.
[20] SHEN X Q, WANG Z Y, WANGYANG P H, et al.Light harvesting in thin film solar cells via designing nanostructured geometries[J]. Optics communications, 2023, 545: 129624.
[21] FEDERICO L G.Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared[D]. California: UC Santa Barbara, 2015.
[22] KIM W, CHOI W.A novel parameter extraction method for the one-diode solar cell model[J]. Solar energy, 2010, 84(6): 1008-1019.

基金

新疆自治区自然科学基金(2022D01C20); 新疆自治区天山创新团队(2023D14001)

PDF(2470 KB)

Accesses

Citation

Detail

段落导航
相关文章

/