针对现阶段运行状态下风力机叶片振动测量方法中,加速度传感器常布设到风力机机头靠近风轮处,导致测量结果易受干扰的问题。基于叶片受力分析和应变模态理论,将叶片上应变传感器采集的原始信号分解为叶片应变信号与振动信号的叠加,设计一种基于应变模态理论和变分模态分解的叶片振动感知方法。通过设计静态模态实验和模拟动态偏航的叶片振动实验,对叶片表面应变和机头振动信号进行对比分析,表明叶片振动感知方法在频域和时频域上均能正确识别叶片振动特征,且其谱线更清晰,受干扰更小,从而为动态偏航运行工况下风力机叶片振动测量提供了一种新方法,可为风力机叶片安全、可靠运行提供技术支持。
Abstract
The acceleration sensor of wind turbine blades is usually placed near the wind turbine head, and it leads to the complex interference of wind turbine vibration signal. Based on the stress analysis of wind blade and strain mode theory, the original strain signals collected on the blade surface is decomposed into blade strain signals and blade vibration signals,and a blade vibration sensing method based on strain mode theory and variational mode decomposition is designed in this paper. By the comparison and analysis of blade strain and wind turbine head vibration through static modal test and blade vibration experiments under the condition of dynamic yaw, it is verified that the blade vibration signal can be positively identified both in frequency-domain and time-frequency domain with more clear spectrum and less interference than those of wind turbine head vibration signal. The sensing method proposed in this paper provides a new strategy for vibration measurement of wind turbine blades under dynamic yaw operation,and it can provide technical support for the safe and reliable operation of wind turbine blades.
关键词
风力机叶片 /
动态偏航 /
振动感知 /
叶片应变 /
变分模态分解 /
应变模态理论
Key words
wind turbine blades /
dynamic yaw /
vibration sensing /
blade strain /
varational modal decomposition /
strain mode theory
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾令旗, 孙双双, 王永哲. 基于SMA的大型风力机叶片振动被动控制研究[J]. 太阳能学报, 2022, 43(12): 227-235.
ZENG L Q, SUN S S, WANG Y Z.Passive vibration control of large wind turbine blades based on SMA[J]. Acta energiae solaris sinica, 2022, 43(12): 227-235.
[2] 张建伟, 汪建文, 闫思佳, 等. 偏航速度对风力机功率及叶片应力的影响研究[J]. 太阳能学报, 2022, 43(9): 273-279.
ZHANG J W, WANG J W, YAN S J, et al.Research on influence of yaw speed on power and blade stress of wind turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 273-279.
[3] 董波. 风轮振动参数随偏航角变化规律的研究[D]. 呼和浩特: 内蒙古工业大学, 2014.
DONG B.Study on the variation law of wind turbine vibration parameters with yaw angle[D]. Hohhot: Inner Mongolia University of Tehchnology, 2014.
[4] 陈涛, 陈永艳, 高志鹰, 等. 小型风力机风轮及机舱动态响应特征分析[J]. 可再生能源, 2018, 36(7): 1080-1085.
CHEN T, CHEN Y Y, GAO Z Y, et al.Dynamic response characteristics analysis of small wind turbine's rotor and nacelle[J]. Renewable energy resources, 2018, 36(7): 1080-1085.
[5] 李德葆, 陆秋海著. 实验模态分析及其应用[M]. 北京: 科学出版社, 2001.
LI D B, LU Q H.Experimental modal analysis and application[M]. Beijing: Science Press, 2001.
[6] 李德葆, 张元润, 罗京. 动态应变/应力场分析的模态法[J]. 振动与冲击, 1992, 11(4): 15-22.
LI D B, ZHANG Y R, LUO J.Using modal analysis method in analyzing dynamic strain/stress field[J]. Journal of vibration and shock, 1992, 11(4): 15-22.
[7] 李德葆. 结构动力分析的应变模态法[J]. 机械强度, 1990, 12(3): 56-61.
LI D B.Structural dynamic'analysis by means of strain mode method[J]. Journal of mechanical strength, 1990, 12(3): 56-61.
[8] 李德葆, 诸葛鸿程, 王波. 实验应变模态分析原理和方法[J]. 清华大学学报(自然科学版), 1990, 30(2): 105-112.
LI D B, ZHUGE H C, WANG B.On the principle and technique of experimental strain modal analysis[J]. Journal of Tsinghua University (science and technology), 1990, 30(2): 105-112.
[9] 蒋祥增, 高志鹰, 汪建文, 等. 风轮应变与塔架振动关联性的试验研究[J]. 排灌机械工程学报, 2017, 35(8): 685-691.
JIANG X Z, GAO Z Y, WANG J W, et al.Experiment on correlation of wind turbine strain and tower vibration[J]. Journal of drainage and irrigation machinery engineering, 2017, 35(8): 685-691.
[10] 李文政. 基于应变模态的采煤机摇臂振动特性及实验研究[D]. 阜新: 辽宁工程技术大学, 2020.
LI W Z.Vibration characteristics and experimental study of shearer rocker arm based on strain mode[D]. Fuxin: Liaoning Technical University, 2020.
[11] 刘翔宇, 王颖, 刘珍等. 基于叶片应变感知的风力机动态风向跟踪算法[J].可再生能源, 2023, 41(3): 345-351.
LIU X Y, WANG Y, LIU Z, et al.Research on Dynamic wind direction tracking algorithm of wind turbine based on strain sensing[J]. Renewable energy resources, 2023, 41(3): 345-351.
[12] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. I EEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62(3): 531-544.
[13] 赵元星, 汪建文, 张立茹, 等. 气动力和离心力对风力机叶片应力影响研究[J]. 太阳能学报, 2021, 42(2): 225-232.
ZHAO Y X, WANG J W, ZHANG L R, et al.Research on influence of aerodynamic load and centrifugal load on wind-turbine-blade stress[J]. Acta energiae solaris sinica, 2021, 42(2): 225-232.
[14] 郭志文. 风向匀速变化下风轮受力分析[D]. 呼和浩特:内蒙古工业大学, 2020.
GUO Z W.Force analysis of wind wheel under uniform velocity change of wind direction[D]. Hohhot: Inner Mongolia University of Technology, 2020
[15] 张建平, 张开华, 王明强, 等. 转速对风机叶片位移和应力的影响[J]. 机床与液压, 2020, 48(19): 156-160.
ZHANG J P, ZHANG K H, WANG M Q, et al.Influence of rotating speed on displacement and stress of wind turbine blade[J]. Machine tool & hydraulics, 2020, 48(19): 156-160.
[16] 王赢政. 风向非匀速变化工况下叶片动应力特性的实验研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
WANG Y Z.Experimental study on dynamic stress characteristics of blades under the conditions of non-uniform wind direction Change[D]. Hohhot: Inner Mongolia University of Technology, 2020.
基金
内蒙古自治区自然科学基金面上项目(2020MS05005)