双PWM变流器飞轮系统母线电压LADRC二次控制策略

魏乐, 周子宇, 房方, 王冰玉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 242-250.

PDF(1936 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1936 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 242-250. DOI: 10.19912/j.0254-0096.tynxb.2023-1411

双PWM变流器飞轮系统母线电压LADRC二次控制策略

  • 魏乐, 周子宇, 房方, 王冰玉
作者信息 +

LADRC-BASED SECONDARY CONTROL STRATEGY OF DC-LINK VOLTAGE FOR DUAL PWM CONVERTER FLYWHEEL ENERGY STORAGE SYSTEM

  • Wei Le, Zhou Ziyu, Fang Fang, Wang Bingyu
Author information +
文章历史 +

摘要

提出一种基于二阶线性自抗扰控制(LADRC)的飞轮储能系统直流母线电压二次控制策略来应对飞轮储能系统频繁充放电切换带来的母线电压波动问题,其将母线电压及微分值分别视为状态变量,负载功率、参数不确定性等内外干扰视为扩展状态量进行扰动观测器设计。该策略能将工况切换造成电压波动的观测扰动量实时补偿至控制量中,实现扰动补偿。加入二次控制解决LADRC面对非常值扰动会存在稳态误差的问题,保证飞轮储能系统在充放能切换过程中母线电压具备较好的快速响应和抗干扰性能的同时实现无差控制。最后通过仿真验证了所提策略的有效性。

Abstract

ALADRC-based secondary control strategy for the DC-link voltage of the FESS is proposed to deal with the voltage fluctuation problem caused by the charge/discharge switching of the FESS. The DC-link voltage and its differential value are considered as the state variables in this strategy. The internal and external disturbances, such as load power, switching loss, and parameter uncertainty, are regarded as an expanded state. This strategy can compensate the disturbance observation quantity caused by the switching of operation stages to the control quantity in real time. And add the secondary control to eliminate the steady state error of DC-link voltage when FESS faces the non-constant disturbance. Ensure that the FESS has good fast-tracking and anti-interference performance during the switching process while realizing error-free control. The effectiveness of the proposed control strategy is verified by simulation results at last.

关键词

飞轮 / 储能 / 整流电路 / 电压控制 / 线性自抗扰控制 / 二次控制

Key words

flywheels / energy storage / rectifying circuits / voltage control / linear active disturbance rejection control / secondary control

引用本文

导出引用
魏乐, 周子宇, 房方, 王冰玉. 双PWM变流器飞轮系统母线电压LADRC二次控制策略[J]. 太阳能学报. 2025, 46(1): 242-250 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1411
Wei Le, Zhou Ziyu, Fang Fang, Wang Bingyu. LADRC-BASED SECONDARY CONTROL STRATEGY OF DC-LINK VOLTAGE FOR DUAL PWM CONVERTER FLYWHEEL ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 242-250 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1411
中图分类号: TK02   

参考文献

[1] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[2] KAILASAN A, DIMOND T, ALLAIRE P, et al.Design and analysis of a unique energy storage flywheel system:an integrated flywheel, motor/generator, and magnetic bearing configuration[J]. Journal of engineering for gas turbines and power, 2015, 137(4): 042505.
[3] WANG G J, WANG P.Rotor loss analysis of PMSM in flywheel energy storage system as uninterruptable power supply[J]. IEEE transactions on applied superconductivity, 2016, 26(7): 1-5.
[4] ARGHANDEH R, PIPATTANASOMPORN M, RAHMAN S.Flywheel energy storage systems for ride-through applications in a facility microgrid[J]. IEEE transactions on smart grid, 2012, 3(4): 1955-1962.
[5] KHODADOOST ARANI A A, ZAKER B, GHAREHPETIAN G B. Induction machine-based flywheel energy storage system modeling and control for frequency regulation after micro-grid islanding[J]. International transactions on electrical energy systems, 2017, 27(9): e2356.
[6] 聂永辉, 张丽丽, 张立栋, 等. 一种基于VSG的风电机组与飞轮储能协调控制方法[J]. 太阳能学报, 2021, 42(8): 387-393.
NIE Y H, ZHANG L L, ZHANG L D, et al.A VSG-based coordinated control method for wind turbine and flywheel energy storage[J]. Acta energiae solaris sinica, 2021, 42(8): 387-393.
[7] 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计[J]. 太阳能学报, 2021, 42(3): 105-113.
ZHOU H, LI J H, GE C X, et al.Research on improving power quality of wind power system based on energy management system of flywheel energy storage system[J]. Acta energiae solaris sinica, 2021, 42(3): 105-113.
[8] RUPP A, BAIER H, MERTINY P, et al.Analysis of a flywheel energy storage system for light rail transit[J]. Energy, 2016, 107: 625-638.
[9] THORMANN B, PUCHBAUER P, KIENBERGER T.Analyzing the suitability of flywheel energy storage systems for supplying high-power charging e-mobility use cases[J]. Journal of energy storage, 2021, 39: 102615.
[10] LENCWE M J, CHOWDHURY S P D, OLWAL T O. Hybrid energy storage system topology approaches for use in transport vehicles: a review[J]. Energy science & engineering, 2022, 10(4): 1449-1477.
[11] GUO W, WANG Y.Control strategy of a permanent magnet synchronous machine in the flywheel energy storage system[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh, PA, USA, 2014: 2485-2489.
[12] JUNG J, LIM S, NAM K.A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor[J]. IEEE transactions on industry applications, 1999, 35(5): 1124-1131.
[13] LEE D C, LEE G M, LEE K D.DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE transactions on industry applications, 2000, 36(3): 826-833.
[14] JARZEBOWICZ L.Errors of a linear current approximation in high-speed PMSM drives[J]. IEEE transactions on power electronics, 2017, 32(11): 8254-8257.
[15] XIANG B, WANG X, WONG W O.Process control of charging and discharging of magnetically suspended flywheel energy storage system[J]. Journal of energy storage, 2022, 47: 103629.
[16] BIGARELLI L, DI BENEDETTO M, LIDOZZI A, et al.PWM-based optimal model predictive control for variable speed generating units[J]. IEEE transactions on industry applications, 2020, 56(1): 541-550.
[17] LIANG Y, LIANG D L, KOU P, et al.Linear robust discharge control for flywheel energy storage system with RLC filter[J]. IEEE transactions on industry applications, 2022, 58(5): 6175-6189.
[18] 王建国, 苏建徽, 吴文进, 等. 飞轮电池储能控制系统设计[J]. 太阳能学报, 2018, 39(5): 1320-1328.
WANG J G, SU J H, WU W J, et al.Design of control system for flywheel battery energy storage[J]. Acta energiae solaris sinica, 2018, 39(5): 1320-1328.
[19] 杨贵杰, 孙力, 崔乃政, 等. 空间矢量脉宽调制方法的研究[J]. 中国电机工程学报, 2001, 21(5): 79-83.
YANG G J, SUN L, CUI N Z, et al.Study on method of the space vector pwm[J]. Proceedings of the CSEE, 2001, 21(5): 79-83.
[20] 刘文军, 唐西胜, 周龙, 等. 基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J]. 电工技术学报, 2015, 30(16): 120-128.
LIU W J, TANG X S, ZHOU L, et al.Research on grid-connected control method for FESS based on back-to-back converter[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 120-128.
[21] 韩永强, 徐明忻, 孙碣, 等. 改进LADRC的储能逆变器直流母线电压控制[J]. 电力系统及其自动化学报, 2021, 33(1): 13-21.
HAN Y Q, XU M X, SUN J, et al.Improved DC bus voltage control of LADRC energy-storage inverter[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 13-21.
[22] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580.
CHEN Z Q, SUN M W, YANG R G.On the stability of linear active disturbance rejection control[J]. Acta automatica sinica, 2013, 39(5): 574-580.
[23] 梁青, 王传榜, 潘金文, 等. 线性自抗扰控制参数b0辨识及参数整定规律[J]. 控制与决策, 2015, 30(9): 1691-1695.
LIANG Q, WANG C B, PAN J W, et al.Parameter identification of b0 and parameter tuning law in linear active disturbance rejection control[J]. Control and decision, 2015, 30(9): 1691-1695.

基金

国家自然科学基金(52176005)

PDF(1936 KB)

Accesses

Citation

Detail

段落导航
相关文章

/