随着海上风电的深远海和风电机组大型化发展趋势,固定式单桩基础的直径随之增大,现有的理论方法及简化模型已无法准确地指导设计,多分层地基条件下的大直径单桩承载特性亟需科学评估。根据3个风场的五根试桩现场水平承载力试验数据,对有限元模型的参数化输入进行率定,并对水平试桩荷载位移曲线的工程数据进行拟合,推荐有限元模型的砂土弹性模量应取压缩模量的1倍,黏性土取3倍。
Abstract
With the development trend of deep-water offshore wind farms and large-scale wind turbines, the diameter of the fixed monopile foundation increases accordingly. The existing theoretical methods and simplified models cannot guide the engineer design accurately. It is urgent to evaluate the lateral bearing capacity of large diameter monopile under multi-layer foundation. According to the horizontal bearing capacity test data of five test piles in three wind fields, the parametric input of the finite element model is calibrated, and the engineering data of the horizontal test pile load to displacement curve is fitted. It is recommended that the elastic modulus of the finite element model should be 1 times of the compression modulus of the sand and 3 times of the clay.
关键词
海上风电场 /
海上风力机 /
海上风电结构 /
单桩基础 /
试桩
Key words
offshore wind farms /
offshore wind turbines /
offshore structures /
monopile /
pile test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱蓉, 徐红, 龚强, 等. 中国风能开发利用的风环境区划[J]. 太阳能学报, 2023, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in China[J]. Acta energiae solaris sinica, 2023, 44(3): 55-66.
[2] 林逸凡, 杨梓豪, 刘玉飞, 等. 中国沿海风电施工窗口期及功效分析[J]. 太阳能学报, 2023, 44(1): 273-280.
LIN Y F, YANG Z H, LIU Y F, et al.Analysis of weather window and construction efficiency for wind power development in offshore China[J]. Acta energiae solaris sinica, 2023, 44(1): 273-280.
[3] 张双益, 李熙晨. 气候变化背景下未来中国近海风能资源预估[J]. 太阳能学报, 2022, 43(1): 29-35.
ZHANG S Y, LI X C.Future projection of wind energy resources over China's offshore areas under different climate change scenarios[J]. Acta energiae solaris sinica, 2022, 43(1): 29-35.
[4] COLIN W.Offshore wind in Europe 2021: Key trends and statistics[R]. WindEurope, 2022.
[5] 韦古强, 何子睿, 刘广东, 等. 水泥土复合单桩水平承载性能模型试验研究[J]. 太阳能学报, 2022, 43(12): 353-359.
WEI G Q, HE Z R, LIU G D, et al.Experimental study on lateral bearing behavior of cement composite monopiles[J]. Acta energiae solaris sinica, 2022, 43(12): 353-359.
[6] 陈晓路, 管春雨, 张管武, 等. 近海风力机水平受荷单桩简化p-y曲线研究[J]. 太阳能学报, 2022, 43(5): 366-371.
CHEN X L, GUAN C Y, ZHANG G W, et al.Research on simplified p-y curves of lateral loaded monopile for offshore wind turbines[J]. Acta energiae solaris sinica, 2022, 43(5): 366-371.
[7] 姜焱培, 周晓敏. 基于小应变硬化土体模型的大直径单桩海上风力机结构位移响应研究[J]. 太阳能学报, 2021, 42(4): 430-437.
JIANG Y P, ZHOU X M.Displacement response of large-diameter single-pile offshore wind turbine structure based on hardening soil model with small strain stiffness[J]. Acta energiae solaris sinica, 2021, 42(4): 430-437.
[8] KIM B T, KIM N K, LEE W J, et al.Experimental load-transfer curves of laterally loaded piles in nak-Dong river sand[J]. Journal of geotechnical and geoenvironmental engineering, 2004, 130(4): 416-425.
[9] MUTHUKKUMARAN K.Effect of slope and loading direction on laterally loaded piles in cohesionless soil[J]. International journal of geomechanics, 2014, 14(1): 1-7.
[10] KIM Y, JEONG S, LEE S.Wedge failure analysis of soil resistance on laterally loaded piles in clay[J]. Journal of geotechnical and geoenvironmental engineering, 2011, 137(7): 678-694.
[11] 朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028-1037.
ZHU B, YANG Y Y, YU Z G, et al.Filed tests on lateral monotonic and cyclic loading of offshore elevated piles[J]. Chinese journal of geotechnical engineering, 2012, 34(6): 1028-1037.
[11] 朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028-1037.
ZHU B, YANG Y Y, YU Z G, et al.Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese journal of geotechnical engineering, 2012, 34(6): 1028-1037.
[12] American Petroleum Institute.Recommended practice for planning designing and constructing fixed offshore platforms-working stress design[S]. Washington D. C.: American Petroleum Institute Publishing Services, 2005.
[13] JTS 237—2017, 水运工程地基基础试验检测技术规程[S].
JTS 237—2017, Technical specification for testing and inspection of port and waterway engineering foundation[S].
基金
海上风电场基础冲刷防护治理理论、措施及工程应用研究(HNKJ23-H18)