基于DRU的海上风电场构网型变流器故障穿越控制策略研究

程志江, 李帅, 杨天翔, 艾斯卡尔, 房忠, 高宇骋

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 140-150.

PDF(7512 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7512 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 140-150. DOI: 10.19912/j.0254-0096.tynxb.2023-1414

基于DRU的海上风电场构网型变流器故障穿越控制策略研究

  • 程志江1, 李帅1, 杨天翔1, 艾斯卡尔2, 房忠2, 高宇骋2
作者信息 +

RESEARCH ON FAULT RIDE-THROUGH CONTROL STRATEGY OF GRID-FORMING TYPE CONVERTER FOR OFFSHORE WIND FARMS BASED ON DRU

  • Cheng Zhijiang1, Li Shuai1, Yang Tianxiang1, Aisikaer2, Fang Zhong2, Gao Yucheng2
Author information +
文章历史 +

摘要

针对现在故障穿越控制策略的故障判断不成熟、故障点覆盖不全面等问题,提出一种通过电压误差判断故障的自适应控制策略,针对海上交流汇集处多个位置(单机故障和公共线海缆故障)的故障进行分析研究。通过利用直流侧的耗能电阻和自适应控制相结合的故障穿越方案,实现了未故障风电机组在故障期间不脱网运行并且快速恢复功率的传输。仿真实验基于RT-LAB半实物仿真平台搭建。仿真结果所示,该方案在面临对称和非对称故障的情况下能够进行故障穿越,提高了风力发电系统的可靠性。

Abstract

Based on grid-forming wind farm and Diode Rectifier Units (DRU) is currently a hot topic in the development of offshore wind power.During faults on the offshore AC collection side, the rapid response of the offshore wind power system and the quick absorption of redundance power are key technologies to ensure the reliable operation of the system. In response to the issues of immature fault identification and incomplete fault coverage in existing fault ride-through control strategies, this paper proposes an adaptive control strategy that determines faults through voltage error, analyzing faults at multiple locations in the offshore AC collection area (including individual machine faults and common cable faults). In response to the issues of immature fault identification and incomplete fault coverage in existing fault ride-through control strategies, this paper proposes an adaptive control strategy that determines faults through voltage error, analyzing faults at multiple locations in the offshore AC collection side (including individual machine faults and common cable faults). By utilizing a combination of energy-dissipating resistors on the DC side and adaptive control, the fault ride-through scheme allows non-faulted wind turbines to operate without disconnecting from the grid during faults and to quickly recover power transmission.The simulation experiments were built on the RT-LAB hardware-in-the-loop simulation platform. The simulation results show that this scheme can achieve fault ride-through under both symmetrical and asymmetrical faults, improving the reliability of the wind power generation system.

关键词

海上风电场 / 相位控制 / 自适应调节 / 低频交流输电 / 二极管整流单元 / 故障穿越

Key words

offshore wind farms / phase control / adaptive modulation / low-frequency alternating current transmission / diode rectifier unit / fault ride-through

引用本文

导出引用
程志江, 李帅, 杨天翔, 艾斯卡尔, 房忠, 高宇骋. 基于DRU的海上风电场构网型变流器故障穿越控制策略研究[J]. 太阳能学报. 2025, 46(1): 140-150 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1414
Cheng Zhijiang, Li Shuai, Yang Tianxiang, Aisikaer, Fang Zhong, Gao Yucheng. RESEARCH ON FAULT RIDE-THROUGH CONTROL STRATEGY OF GRID-FORMING TYPE CONVERTER FOR OFFSHORE WIND FARMS BASED ON DRU[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 140-150 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1414
中图分类号: TM614   

参考文献

[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3770.
CHI Y N, LIANG W, ZHANG Z K, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770.
[2] SEMAN S, ZUROWSKI R,TARATORIS C.Interconnection of advanced type 4 WTGs with diode rectifier based HVDC solution and weak AC grids[C]//Proceedings of the 14th Wind Integration Workshop, Brussels, Belgium. 2015: 48.
[3] KUHN O, MENKE P, ZUROWSKI R, et al.2nd generation DC grid access for offshore wind farms:HVDC in an AC fashion[C]//CIGRE. Paris, France, 2016:1-7.
[4] BLASCO-GIMENEZ R, AÑÓ-VILLALBA S, RODRÍGUEZ-D'DERLÉE J, et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVdc link[J]. IEEE transactions on power electronics, 2010, 25(12): 3095-3105.
[5] BLASCO-GIMENEZ R, ANÓ-VILLALBA S, RODRIGUEZ-D'DERLÉE J, et al. Diode-based HVdc link for the connection of large offshore wind farms[J]. IEEE transactions on energy conversion, 2011, 26(2): 615-626.
[6] BERNAL-PEREZ S, ANO-VILLALBA S, BLASCO-GIMENEZ R, et al.Efficiency and fault ride-through performance of a diode-rectifier-and VSC-inverter-based HVDC link for offshore wind farms[J]. IEEE transactions on industrial electronics, 2013, 60(6): 2401-2409.
[7] GUO J, JIANG D Z, ZHOU Y B, et al.Energy storable VSC-HVDC system based on modular multilevel converter[J]. International journal of electrical power & energy systems, 2016, 78: 269-276.
[8] CARDIEL-ÁLVAREZ M Á, RODRIGUEZ-AMENEDO J L, ARNALTES S, et al. Modeling and control of LCC rectifiers for offshore wind farms connected by HVDC links[J]. IEEE transactions on energy conversion, 2017, 32(4): 1284-1296.
[9] YU L J, LI R, XU L.Distributed PLL-based control of offshore wind turbines connected with diode-rectifier-based HVDC systems[J]. IEEE transactions on power delivery, 2018, 33(3): 1328-1336.
[10] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34(29): 5051-5062.
XU Z, XUE Y L, ZHANG Z R.VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062.
[11] YU L J, LI R, XU L, et al.Analysis and control of offshore wind farms connected with diode rectifier-based HVDC system[J]. IEEE transactions on power delivery, 2020, 35(4): 2049-2059.
[12] 魏自聪, 章国宝. 直驱式六相永磁同步风力发电机最佳风能追踪控制[J]. 电力自动化设备, 2010, 30(12): 97-101.
WEI Z C, ZHANG G B.Optimal wind energy tracking control of directly-driven six-phase PMSG[J]. Electric power automation equipment, 2010, 30(12): 97-101.
[13] 唐英杰, 张哲任, 徐政. 基于二极管不控整流单元的远海风电低频交流送出方案[J]. 中国电力, 2020, 53(7): 44-54, 168.
TANG Y J, ZHANG Z R, XU Z.Diode rectifier unit based LFAC transmission for offshore wind farm integration[J]. Electric power, 2020, 53(7): 44-54, 168.
[14] ROCABERT J, LUNA A, BLAABJERG F, et al.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[15] 谢震, 张兴, 曹仁贤, 等. 双馈风力发电用交直交变流器控制策略的研究[J]. 太阳能学报, 2007, 28(8): 825-829.
XIE Z, ZHANG X, CAO R X, et al.Study on the control strategy of ac-dc-ac convertor used in wind turbine system driven by doubly fed induction generator[J]. Acta energiae solaris sinica, 2007, 28(8): 825-829.
[16] 李霞林, 李志旺, 郭力, 等. 交直流微电网集群柔性控制及稳定性分析[J]. 中国电机工程学报, 2019, 39(20): 5948-5961.
LI X L, LI Z W, GUO L, et al.Flexible control and stability analysis of AC/DC microgrids clusters[J]. Proceedings of the CSEE, 2019, 39(20): 5948-5961.
[17] 姚骏, 廖勇, 庄凯. 电网故障时永磁直驱风电机组的低电压穿越控制策略[J]. 电力系统自动化, 2009, 33(12): 91-96.
YAO J, LIAO Y, ZHUANG K.A low voltage ride-through control strategy of permanent magnet direct-driven wind turbine under grid faults[J]. Automation of electric power systems, 2009, 33(12): 91-96.
[18] 杨天翔, 程志江, 杨涵棣, 等. 基于自抗扰控制的风电并网变流器锁相环设计[J]. 太阳能学报, 2023, 44(4): 147-155.
YANG T X, CHENG Z J, YANG H D, et al.Design of phase-locked loop of grid connected converter based on active disturbance rejection control[J]. Acta energiae solaris sinica, 2023, 44(4): 147-155.
[19] 吕佃顺, 许洪华, 马强, 等. 直驱变流器接入弱电网次同步振荡机理分析[J]. 太阳能学报, 2021, 42(5): 423-429.
LYU D S, XU H H, MA Q, et al.Analysis of sub-synchronous oscillation mechanism of direct-drive wind turbine inverter connected to week power system[J]. Acta energiae solaris sinica, 2021, 42(5): 423-429.
[20] 辛业春, 王威儒, 李国庆, 等. 海上风电MMC-HVDC联网系统控制策略[J]. 太阳能学报, 2019, 40(6): 1731-1738.
XIN Y C, WANG W R, LI G Q, et al.Control strategy on grid connected offshore wind farm based on MMC-HVDC[J]. Acta energiae solaris sinica, 2019, 40(6): 1731-1738.
[21] PRIGNITZ C, ECKEL H G, ACHENBACH S, et al.FixReF: a control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Vancouver, BC, Canada, 2016: 1-7.
[22] NGUYEN T H, LEE D C, KIM C K.A series-connected topology of a diode rectifier and a voltage-source converter for an HVDC transmission system[J]. IEEE transactions on power electronics, 2014, 29(4): 1579-1584.

基金

新疆维吾尔自治区重大专项(2022A01004-1); 自治区重大专项横向课题(202208140017); 自治区自然科学基金面上项目(2021D01C046); 自治区重点实验室开放课题(2021D04011)

PDF(7512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/