基于Copula函数的代表年风速计算方法研究

王远坤, 冯钰栋, 马惠群

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 151-157.

PDF(4914 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4914 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 151-157. DOI: 10.19912/j.0254-0096.tynxb.2023-1415

基于Copula函数的代表年风速计算方法研究

  • 王远坤1, 冯钰栋2, 马惠群2
作者信息 +

RESEARCH ON CALCULATION METHOD OF REPRESENTATIVE YEAR WIND SPEED BASED ON COPULA FUNCTION

  • Wang Yuankun1, Feng Yudong2, Ma Huiqun2
Author information +
文章历史 +

摘要

以长系列再分析数据作为基础数据,提出一种基于Copula函数的代表年风速计算方法。采用威布尔分布计算测风年测风塔和气象站风速的概率边缘分布,利用Gumbel-Hougaard Copula函数对测风塔和气象站风速边缘分布进行联结,以条件分布计算测风年和代表年风速之间的差值,以推求代表年风速,并与规范推荐方法进行对比分析。结果表明,无论气象站和测风塔年风速相关性优劣,Copula方法代表年风速计算结果精度均优于规范方法,为风电场资源评价中代表年风速计算提供了一种新的思路。

Abstract

This paper presents a method for estimating representative year wind speeds based on copula functions using a long series of reanalysis data. The probability marginal distribution of wind speeds for anemometer towers and meteorological stations are calculated using the Weibull distribution. The Gumbel-Hougaard Copula function is used to model the dependence between the wind speed distributions from the towers and stations. The difference between the conditional distribution of the wind speed from the towers and the representative year wind speed is calculated to obtain the representative year wind speed. The findings show that regardless of the quality of the correlation between the wind speeds from the meteorological station and the wind measurement tower, the Copula method achieves higher accuracy in calculating the annual wind speeds compared to the standard method. This study provides a new approach for estimating representative the annual wind speed in wind power resource assessment.

关键词

风速 / 威布尔分布 / 风电 / Copula / 条件分布 / 代表年

Key words

wind speed / Weibull distribution / wind power / Copula / conditional distribution / representative year

引用本文

导出引用
王远坤, 冯钰栋, 马惠群. 基于Copula函数的代表年风速计算方法研究[J]. 太阳能学报. 2025, 46(1): 151-157 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1415
Wang Yuankun, Feng Yudong, Ma Huiqun. RESEARCH ON CALCULATION METHOD OF REPRESENTATIVE YEAR WIND SPEED BASED ON COPULA FUNCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 151-157 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1415
中图分类号: TM614   

参考文献

[1] 邹才能, 陈艳鹏, 熊波, 等. 碳中和目标下中国新能源使命[J]. 中国科学院院刊, 2023, 38(1): 48-58.
ZOU C N, CHEN Y P, XIONG B, et al.Mission of new energy under carbon neutrality goal in China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 48-58.
[2] 杜燕军, 冯长青. 风电场代表年风速计算方法的分析[J]. 可再生能源, 2010, 28(1): 105-108.
DU Y J, FENG C Q.Analysis on different computing method of wind speed of the representative year in wind farm[J]. Renewable energy resources, 2010, 28(1): 105-108.
[3] GB/T 18710—2002, 风电场风能资源评估方法》[S]. 2002.
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S]. 2002.
[4] 谢今范, 雷杨娜, 孙娴. 风电场代表年数据订正方法的不确定性分析[J]. 太阳能, 2015, (4): 48-55.
XIE J F, LEI Y N, SUN X.Uncertainty analysis of revision method of representative annual data of wind farm[J]. Solar energy, 2015, (4): 48-55.
[5] 陈振华, 李云涛, 唐杰, 等. 风电场设计中数值模拟数据的应用研究[J]. 电力学报, 2018, 33(6): 498-504.
CHEN Z H, LI Y T, TANG J, et al.Application of numerical simulation data in wind farm design[J]. Journal of electric power, 2018, 33(6): 498-504.
[6] 旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5):44-53.
KUANG F F, ZHANG Y Q, ZHANG J P, et al.Comparison and evaluation of the three sea surface wind products in Taiwan strait[J]. Acta oceanologica sinica, 2015, 37(5): 44-53.
[7] 陈卓, 郭军红, 亢朋朋, 等. 5套再分析资料在阿勒泰地区风资源评估中的适用性研究[J]. 太阳能学报, 2023, 44(4): 60-66.
CHEN Z, GUO J H, KANG P P, et al.Applicability of five sets of reanalysis data in wind resource assessment in Altay prefecture[J]. Acta energiae solaris sinica, 2023, 44(4): 60-66.
[8] 王守峰, 戚振亚, 许卫东. 风电场代表年订正方法研究[J]. 绿色科技, 2022, 24(18): 237-240.
WANG S F, QI Z Y, XU W D.Research on the revision method of wind farm representative year[J]. Journal of green science and technology, 2022, 24(18): 237-240.
[9] WANG Y K, MA H Q, WANG D, et al.A new method for wind speed forecasting based on Copula theory[J]. Environmental research, 2018, 160: 365-371.
[10] 宋松柏, 王小军. 基于Copula函数的水文随机变量和概率分布计算[J]. 水利学报, 2018, 49(6): 687-693.
SONG S B, WANG X J.Probability distribution calculation of the sum of hydrological random variables based on Copula function approach[J]. Journal of hydraulic engineering, 2018, 49(6): 687-693.
[11] XU P C, WANG D, SINGH V P, et al.Copula-based seasonal rainfall simulation considering nonstationarity[J]. Journal of hydrology, 2020, 590: 125439.
[12] TOOTOONCHI F, SADEGH M, HAERTER J O, et al.Copulas for hydroclimatic analysis: a practice-oriented overview[J]. Wiley interdisciplinary reviews-water, 2022, 9(2): e1579.
[13] SEIFI A, EHTERAM M, SOROUSH F, et al.Multi-model ensemble prediction of pan evaporation based on the Copula Bayesian model averaging approach[J]. Engineering applications of artificial intelligence, 2022, 114: 105124.
[14] 张翔, 冉啟香, 夏军, 等. 基于Copula函数的水量水质联合分布函数[J]. 水利学报, 2011, 42(4): 483-489.
ZHANG X, RAN Q X, XIA J, et al.Jointed distribution function of water quality and water quantity based on Copula[J]. Journal of hydraulic engineering, 2011, 42(4): 483-489.

基金

国家电投鲁院科技项目(37-K2022-077)

PDF(4914 KB)

Accesses

Citation

Detail

段落导航
相关文章

/