风电机组塔架LBA-MNA屈曲分析及优化研究

白璐, 刘勇, 杨淑超, 汪小芳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 176-183.

PDF(3525 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3525 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 176-183. DOI: 10.19912/j.0254-0096.tynxb.2023-1422

风电机组塔架LBA-MNA屈曲分析及优化研究

  • 白璐1,2, 刘勇1,2, 杨淑超1,2, 汪小芳1,2
作者信息 +

RESEARCH ON LBA-MNA BUCKLING ANALYSIS AND OPTIMIZATION OF WIND TURBINE TOWER

  • Bai Lu1,2, Liu Yong1,2, Yang Shuchao1,2, Wang Xiaofang1,2
Author information +
文章历史 +

摘要

针对塔架屈曲计算中工程算法较为保守的问题,以某大型风电机组塔架为研究对象,使用线弹性屈曲分析-材料非线性分析方法(LBA-MNA)对该塔架的抗屈曲性能进行计算与研究。结果表明,LBA-MNA方法可更准确评估塔架抗屈曲能力,在相同条件下较工程算法所得屈曲裕度更大。对基于工程算法已无减重空间的塔架以质量减少2~14 t为目标通过调整壁厚进行优化,结果显示应用LBA-MNA方法计算屈曲塔架质量可减少5.71%。证明了LBA-MNA方法在以屈曲要素为主导的塔架优化问题中使用的可行性。

Abstract

In order to solve the problem that engineering algorithm is relatively conservative in tower buckling calculation, taking a large wind turbine tower as the research object, linear elastic bifurcation analysis-materially nonlinear analysis (LBA-MNA) method was studied and used to calculate the buckling resistance of tower. The results indicate that LBA-MNA method can evaluate the buckling resistance of tower more accurately with larger buckling margin compared to engineering algorithm under the same conditions. A tower with no weight reduction space based on engineering algorithm was then optimized by modifying wall thickness with the goal of reducing weight by 2 to 14 tons. The results show that using LBA-MNA method for buckling calculation can reduce tower weight by 5.71%. It proves the feasibility of using LBA-MNA method in optimization of tower dominated by buckling.

关键词

风电机组 / 塔架 / 屈曲 / LBA-MNA / 优化

Key words

wind turbines / towers / buckling / LBA-MNA / optimization

引用本文

导出引用
白璐, 刘勇, 杨淑超, 汪小芳. 风电机组塔架LBA-MNA屈曲分析及优化研究[J]. 太阳能学报. 2025, 46(1): 176-183 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1422
Bai Lu, Liu Yong, Yang Shuchao, Wang Xiaofang. RESEARCH ON LBA-MNA BUCKLING ANALYSIS AND OPTIMIZATION OF WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 176-183 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1422
中图分类号: TH114   

参考文献

[1] 宋恭杰, 裘慧杰, 何先照, 等. 不同结构形式对风电机组塔架轻量化设计的影响研究[J]. 机电工程, 2021, 38(2): 250-255.
SONG G J, QIU H J, HE X Z, et al.Influence of different structural forms on the lightweight of wind turbine tower[J]. Journal of mechanical & electrical engineering, 2021, 38(2): 250-255.
[2] 李剑波, 李学旺, 黄冬明. 风电塔筒屈曲承载能力提高方法研究[J]. 风能, 2018(1): 66-69.
LI J B, LI X W, HUANG D M.Study on the method of improving buckling capacity of wind power tower[J]. Wind energy, 2018(1): 66-69.
[3] 张羽, 蔡新, 高强, 等. 风力机塔架结构研究概述[J]. 工程设计学报, 2016, 23(2): 108-115, 123.
ZHANG Y, CAI X, GAO Q, et al.Research summary of wind turbine tower structure[J]. Chinese journal of engineering design, 2016, 23(2): 108-115, 123.
[4] 左熹, 顾荣蓉. 钢管混凝土风力机塔架屈曲性能研究[J]. 工业安全与环保, 2018, 44(10): 15-19.
ZUO X, GU R R.Study on stability of concrete filled steel tubular tower[J]. Industrial safety and environmental protection, 2018, 44(10): 15-19.
[5] 杜静, 杨瑞伟, 李东坡, 等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报, 2021, 42(3): 9-14.
DU J, YANG R W, LI D P, et al.Stability analysis of reinforced concrete tower of mW grade wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 9-14.
[6] 杜静, 周云鹏, 郭智. 大型水平轴风力发电机组塔筒非线性屈曲分析[J]. 太阳能学报, 2016, 37(12): 3178-3183.
DU J, ZHOU Y P, GUO Z.Nonlinear buckling analysis of tower of large scale horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(12): 3178-3183.
[7] GANTES C J, KOULATSOU K G, CHONDROGIANNIS K A.Alternative ring flange models for buckling verification of tubular steel wind turbine towers via advanced numerical analyses and comparison to code provisions[J]. Structures, 2023, 47: 1366-1382.
[8] 郑浣琪, 陈冰冰, 梁力锦, 等. EN 1993-1-6标准中的壳体失稳设计方法简述[J]. 压力容器, 2013, 30(9): 45-53.
ZHENG H Q, CHEN B B, LIANG L J, et al.An introduction of design approaches defined in EN 1993-1-6[J]. Pressure vessel technology, 2013, 30(9): 45-53.
[9] SŁOWIŃSKI K, PIEKARCZYK M, DYBEŁ P. Effect of simplified wind girder modelling on MNA-LBA analysis of open steel tanks[J]. International journal of pressure vessels and piping, 2023, 203: 104941.
[10] SADOWSKI A J, SEIDEL M, AL-LAWATI H, et al.8-MW wind turbine tower computational shell buckling benchmark. Part 1: an international ‘round-robin' exercise[J]. Engineering failure analysis, 2023, 148: 107124.
[11] SADOWSKI A J, SEIDEL M.8-MW wind turbine tower computational shell buckling benchmark. part 2: detailed reference solution[J]. Engineering failure analysis, 2023, 148: 107133.
[12] Eurocode 3:design of steel structures,part 1-6:strength and stability of shell structures[S].
[13] DIMOPOULOS C A, GANTES C J.Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending[J]. Thin-walled structures, 2012, 54: 140-155.
[14] GB/T1591—2018, 低合金高强度结构钢[S].
GB/T1591—2018, High strength low alloy structural steels[S].
[15] DOS SANTOS G B, GARDNER L, KUCUKLER M. A method for the numerical derivation of plastic collapse loads[J]. Thin-walled structures, 2018, 124: 258-277.
[16] Eurocode 3:design of steel structures, part 1-9:fatigue[S].
[17] 章培, 唐友刚, 李焱, 等. 基于多目标遗传算法的海上铰接式风力机塔架结构参数优化[J]. 太阳能学报, 2023, 44(8): 460-466.
ZHANG P, TANG Y G, LI Y, et al.Tower structure parameter optimization of offshore articulated wind turbine based on Muti-objective genetic algorithm[J]. Acta energiae solaris sinica, 2023, 44(8): 460-466.

基金

浙江省“尖兵”“领雁”研发攻关计划项目(2023C01123)

PDF(3525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/