RESEARCH ON LBA-MNA BUCKLING ANALYSIS AND OPTIMIZATION OF WIND TURBINE TOWER
Bai Lu1,2, Liu Yong1,2, Yang Shuchao1,2, Wang Xiaofang1,2
Author information+
1. Windey Energy Technology Group Co., Ltd., Hangzhou 310012, China; 2. Key Laboratory of Wind Power Technology of Zhejiang Province, Hangzhou 310012, China
In order to solve the problem that engineering algorithm is relatively conservative in tower buckling calculation, taking a large wind turbine tower as the research object, linear elastic bifurcation analysis-materially nonlinear analysis (LBA-MNA) method was studied and used to calculate the buckling resistance of tower. The results indicate that LBA-MNA method can evaluate the buckling resistance of tower more accurately with larger buckling margin compared to engineering algorithm under the same conditions. A tower with no weight reduction space based on engineering algorithm was then optimized by modifying wall thickness with the goal of reducing weight by 2 to 14 tons. The results show that using LBA-MNA method for buckling calculation can reduce tower weight by 5.71%. It proves the feasibility of using LBA-MNA method in optimization of tower dominated by buckling.
Bai Lu, Liu Yong, Yang Shuchao, Wang Xiaofang.
RESEARCH ON LBA-MNA BUCKLING ANALYSIS AND OPTIMIZATION OF WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 176-183 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1422
中图分类号:
TH114
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宋恭杰, 裘慧杰, 何先照, 等. 不同结构形式对风电机组塔架轻量化设计的影响研究[J]. 机电工程, 2021, 38(2): 250-255. SONG G J, QIU H J, HE X Z, et al.Influence of different structural forms on the lightweight of wind turbine tower[J]. Journal of mechanical & electrical engineering, 2021, 38(2): 250-255. [2] 李剑波, 李学旺, 黄冬明. 风电塔筒屈曲承载能力提高方法研究[J]. 风能, 2018(1): 66-69. LI J B, LI X W, HUANG D M.Study on the method of improving buckling capacity of wind power tower[J]. Wind energy, 2018(1): 66-69. [3] 张羽, 蔡新, 高强, 等. 风力机塔架结构研究概述[J]. 工程设计学报, 2016, 23(2): 108-115, 123. ZHANG Y, CAI X, GAO Q, et al.Research summary of wind turbine tower structure[J]. Chinese journal of engineering design, 2016, 23(2): 108-115, 123. [4] 左熹, 顾荣蓉. 钢管混凝土风力机塔架屈曲性能研究[J]. 工业安全与环保, 2018, 44(10): 15-19. ZUO X, GU R R.Study on stability of concrete filled steel tubular tower[J]. Industrial safety and environmental protection, 2018, 44(10): 15-19. [5] 杜静, 杨瑞伟, 李东坡, 等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报, 2021, 42(3): 9-14. DU J, YANG R W, LI D P, et al.Stability analysis of reinforced concrete tower of mW grade wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 9-14. [6] 杜静, 周云鹏, 郭智. 大型水平轴风力发电机组塔筒非线性屈曲分析[J]. 太阳能学报, 2016, 37(12): 3178-3183. DU J, ZHOU Y P, GUO Z.Nonlinear buckling analysis of tower of large scale horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(12): 3178-3183. [7] GANTES C J, KOULATSOU K G, CHONDROGIANNIS K A.Alternative ring flange models for buckling verification of tubular steel wind turbine towers via advanced numerical analyses and comparison to code provisions[J]. Structures, 2023, 47: 1366-1382. [8] 郑浣琪, 陈冰冰, 梁力锦, 等. EN 1993-1-6标准中的壳体失稳设计方法简述[J]. 压力容器, 2013, 30(9): 45-53. ZHENG H Q, CHEN B B, LIANG L J, et al.An introduction of design approaches defined in EN 1993-1-6[J]. Pressure vessel technology, 2013, 30(9): 45-53. [9] SŁOWIŃSKI K, PIEKARCZYK M, DYBEŁ P. Effect of simplified wind girder modelling on MNA-LBA analysis of open steel tanks[J]. International journal of pressure vessels and piping, 2023, 203: 104941. [10] SADOWSKI A J, SEIDEL M, AL-LAWATI H, et al.8-MW wind turbine tower computational shell buckling benchmark. Part 1: an international ‘round-robin' exercise[J]. Engineering failure analysis, 2023, 148: 107124. [11] SADOWSKI A J, SEIDEL M.8-MW wind turbine tower computational shell buckling benchmark. part 2: detailed reference solution[J]. Engineering failure analysis, 2023, 148: 107133. [12] Eurocode 3:design of steel structures,part 1-6:strength and stability of shell structures[S]. [13] DIMOPOULOS C A, GANTES C J.Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending[J]. Thin-walled structures, 2012, 54: 140-155. [14] GB/T1591—2018, 低合金高强度结构钢[S]. GB/T1591—2018, High strength low alloy structural steels[S]. [15] DOS SANTOS G B, GARDNER L, KUCUKLER M. A method for the numerical derivation of plastic collapse loads[J]. Thin-walled structures, 2018, 124: 258-277. [16] Eurocode 3:design of steel structures, part 1-9:fatigue[S]. [17] 章培, 唐友刚, 李焱, 等. 基于多目标遗传算法的海上铰接式风力机塔架结构参数优化[J]. 太阳能学报, 2023, 44(8): 460-466. ZHANG P, TANG Y G, LI Y, et al.Tower structure parameter optimization of offshore articulated wind turbine based on Muti-objective genetic algorithm[J]. Acta energiae solaris sinica, 2023, 44(8): 460-466.