抗氧化小分子体掺杂对锡铅钙钛矿太阳电池性能的影响

董婧, 刘辉, 王三龙, 王鹏阳, 赵颖, 张晓丹

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 2-9.

PDF(3038 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3038 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 2-9. DOI: 10.19912/j.0254-0096.tynxb.2023-1429

抗氧化小分子体掺杂对锡铅钙钛矿太阳电池性能的影响

  • 董婧1~4, 刘辉1~4, 王三龙1~4, 王鹏阳1~4, 赵颖1~4, 张晓丹1~4
作者信息 +

EFFECT OF ANTIOXIDANT SMALL MOLECULE DOPING ON PERFORMANCE OF TIN-LEAD PEROVSKITE SOLAR CELLS

  • Dong Jing1~4, Liu Hui1~4, Wang Sanlong1~4, Wang Pengyang1~4, Zhao Ying1~4, Zhang Xiaodan1~4
Author information +
文章历史 +

摘要

锡铅钙钛矿中存在各种缺陷,且Sn2+容易被氧化成Sn4+,从而导致太阳电池的转换效率和稳定性较差。研究发现4-香豆酸(p-C)的引入可显著改变薄膜的表面形貌、有效提高结晶性,且抑制Sn2+的氧化,有利于提高钙钛矿层与传输层之间的能级匹配度。通过对钙钛矿光吸收层的缺陷进行钝化,可显著提升太阳电池的光电特性。最终,锡铅钙钛矿太阳电池的开路电压提升65 mV,光电转换效率由18.14%提升至20.37%,并且电池稳定性得到显著提升。

Abstract

Various defects exist in tin-lead alloyed perovskites, and Sn2+ is easily oxidized to Sn4+, which lead to poor power conversion efficiency (PCE) and stability of solar cells. It is found that the introduction of p-Coumaric acid modifies the surface morphology of the film, effectively improves the crystallinity, and inhibits the oxidation of Sn2+, which is conducive to the matching degree of energy levels between the perovskite layer and the transport layer. The photovoltaic characteristics of the device are significantly enhanced through passivating the defects in the perovskite layer. Ultimately, the open-circuit voltage of the tin-lead perovskite solar cell is enhanced by 65 mV. The PCE is increased from 18.14% to 20.37%, and the stability of the device is effectively improved.

关键词

钙钛矿太阳电池 / 抗氧化剂 / 开路电压 / 添加剂

Key words

perovskite solar cells / antioxidants / open-circuit voltage / additives

引用本文

导出引用
董婧, 刘辉, 王三龙, 王鹏阳, 赵颖, 张晓丹. 抗氧化小分子体掺杂对锡铅钙钛矿太阳电池性能的影响[J]. 太阳能学报. 2024, 45(4): 2-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1429
Dong Jing, Liu Hui, Wang Sanlong, Wang Pengyang, Zhao Ying, Zhang Xiaodan. EFFECT OF ANTIOXIDANT SMALL MOLECULE DOPING ON PERFORMANCE OF TIN-LEAD PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 2-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1429
中图分类号: TM914.4   

参考文献

[1] National renewable energy laboratory (NREL) chart. Best research-cell efficiencies[EB/OL].[2024-01-23]. www.nrel.gov/pv/cell-efficiency.html.
[2] LIANG Z, XU H F, ZHANG Y, et al.A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells[J]. Advanced materials, 2022, 34(18): e2110241.
[3] HAO F, STOUMPOS C C, CHANG R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136(22): 8094-8099.
[4] EPERON G E, LEIJTENS T, BUSH K A, et al.Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 2016, 354(6314): 861-865.
[5] ZHAO D W, YU Y, WANG C L, et al.Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells[J]. Nature energy, 2017, 2(4): 17018.
[6] WANG J, LIU H, ZHAO Y, et al.Perovskite-based tandem solar cells gallop ahead[J]. Joule, 2022, 6(3): 509-511.
[7] BANDARA R M I, SILVA S M, UNDERWOOD C C L, et al. Progress of Pb-Sn mixed perovskites for photovoltaics: a review[J]. Energy & environmental materials, 2022, 5(2): 370-400.
[8] WANG J T, UDDIN M A, CHEN B, et al.Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive[J]. Advanced energy materials, 2023, 13(15): 2204115.
[9] ZHANG Z H, HUANG Y F, JIN J L, et al.Mechanistic understanding of oxidation of tin-based perovskite solar cells and mitigation strategies[J]. Angewandte chemie-international edition, 2023, 62(45): e202308093.
[10] XIAO K, LIN R X, HAN Q L, et al.All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant[J]. Nature energy, 2020, 5: 870-880.
[11] 王俪璇, 李仁杰, 刘辉, 等. P-I-N型锡铅钙钛矿太阳电池性能的限制因素及解决策略[J]. 物理学报, 2021, 70(11): 17-35.
WANG L X, LI R J, LIU H, et al.Limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance[J]. Acta physica sinica, 2021, 70(11): 17-35.
[12] BAN H X, SUN Q, ZHANG T, et al.Stabilization of inorganic CsPb0.5Sn0.5I2Br perovskite compounds by antioxidant tea polyphenol[J]. Solar RRL, 2020, 4(3): 1900457.
[13] LIU H, DONG J, WANG P Y, et al.Suppressing the photoinduced halide segregation in wide-bandgap perovskite solar cells by strain relaxation[J]. Advanced functional materials, 2023, 33(41): 2303673.
[14] ZOU X J, DONG Y Y, KE J, et al.Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation[J]. Chemical engineering journal, 2020, 400: 125919.
[15] ZHANG Z F, LIANG J H, WANG J L, et al.DMSO-free solvent strategy for stable and efficient methylammonium-free Sn-Pb alloyed perovskite solar cells[J]. Advanced energy materials, 2023, 13(17): 2300181.
[16] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[17] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[18] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82.
ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82.
[19] LIU H, WANG L X, LI R J, et al.Modulated crystallization and reducedVOC deficit of mixed lead-tin perovskite solar cells with antioxidant caffeic acid[J]. ACS energy letters, 2021, 6(8): 2907-2916.
[20] LUO J C, HE R, LAI H G, et al.Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn-Pb perovskites and efficient all-perovskite tandem solar cells[J]. Advanced materials, 2023, 35(22): e2300352.
[21] ZHANG K C, SPÄTH A, ALMORA O, et al. Suppressing nonradiative recombination in lead-tin perovskite solar cells through bulk and surface passivation to reduce open circuit voltage losses[J]. ACS energy letters, 2022, 7(10): 3235-3243.
[22] YANG X Y, FU Y Q, SU R, et al.Superior carrier lifetimes exceeding 6 µs in polycrystalline halide perovskites[J]. Advanced materials, 2020, 32(39): 2002585.
[23] DONG H, RAN C X, GAO W Y, et al.Crystallization dynamics of Sn-based perovskite thin films: toward efficient and stable photovoltaic devices[J]. Advanced energy materials, 2022, 12(1): 2102213.
[24] KIM H, LEE J W, HAN G R, et al.Highly efficient hole transport layer-free low bandgap mixed Pb-Sn perovskite solar cells enabled by a binary additive system[J]. Advanced functional materials, 2022, 32(12): 2110069.
[25] JIANG X F, LI C W, WANG X Z, et al.Multifunctional regulation of highly orientated tin-lead alloyed perovskite solar cells[J]. ACS energy letters, 2023, 8(2): 1068-1075.
[26] XIONG S B, HOU Z Y, ZOU S J, et al.Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency[J]. Joule, 2021, 5(2): 467-480.

基金

国家自然科学基金(62274099); 高等教育学科创新海外人才引进项目(B16027); 南开大学中央高校基本科研业务费

PDF(3038 KB)

Accesses

Citation

Detail

段落导航
相关文章

/