钙钛矿光伏组件成本预测

李彬, 舒安康, 彭勇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 91-100.

PDF(2075 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2075 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 91-100. DOI: 10.19912/j.0254-0096.tynxb.2023-1432

钙钛矿光伏组件成本预测

  • 李彬1, 舒安康2, 彭勇1,2
作者信息 +

COST PREDICTION OF PEROVSKITE PHOTOVOLTAIC MODULES

  • Li Bin1, Shu Ankang2, Peng Yong1,2
Author information +
文章历史 +

摘要

针对钙钛矿太阳电池的瓦电成本和度电成本提出计算方法。从钙钛矿光伏组件的生产技术路线着手,结合钙钛矿光伏组件在生产与制造过程中的材料成本、产线成本以及产线折旧等方面对钙钛矿光伏组件的瓦电成本进行计算和讨论。同时对钙钛矿光伏组件的度电成本进行预测,并与火电、水电以及风电的度电成本进行比较,所得结论可为从事钙钛矿光伏组件制造的企业与科研院所提供一定的助益信息。

Abstract

The review provides calculation methods for the cost per watt and levelized cost of energy of perovskite photovoltaic modules. Combining with the production technology routes of perovskite photovoltaic modules, the paper discusses and calculates the cost per watt of perovskite photovoltaic modules by considering material costs, production line costs, and depreciation of production lines during manufacturing. Additionally, the levelized cost of energy of perovskite photovoltaic modules is calculated and forecasted. A comparative analysis is conducted between the levelized cost of energy of perovskite photovoltaic modules and those of thermal power, hydroelectric power, and wind power, aiming to provide valuable insights for enterprises and research institutes engaged in the manufacture of perovskite photovoltaic modules.

关键词

钙钛矿太阳电池 / 瓦电成本 / 平准化度电成本 / 薄膜技术 / 光伏发电技术 / 成本分析

Key words

perovskite solar cells / cost per watt / levelized cost of energy / film technology / photovoltaic technology / cost analysis

引用本文

导出引用
李彬, 舒安康, 彭勇. 钙钛矿光伏组件成本预测[J]. 太阳能学报. 2024, 45(4): 91-100 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1432
Li Bin, Shu Ankang, Peng Yong. COST PREDICTION OF PEROVSKITE PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 91-100 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1432
中图分类号: TM914.4   

参考文献

[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[2] LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.
[3] KIM H S, LEE C R, IM J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific reports, 2012, 2: 591.
[4] LIU M Z, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[5] BURSCHKA J, PELLET N, MOON S J, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[6] ZHOU H P, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546.
[7] YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[8] LI X, BI D Q, YI C Y, et al.A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62.
[9] LI Z, KLEIN T R, KIM D H, et al.Scalable fabrication of perovskite solar cells[J]. Nature reviews materials, 2018, 3(4): 18017.
[10] PARK N G, ZHU K.Scalable fabrication and coating methods for perovskite solar cells and solar modules[J]. Nature reviews materials, 2020, 5: 333-350.
[11] CUI P, QU S J, ZHANG Q, et al.Homojunction perovskite solar cells: opportunities and challenges[J]. Energy materials, 2022, 1(2): 100014.
[12] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.
[13] XIA Y, ZHU M, QIN L, et al.Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells[J]. Energy materials, 2023, 3(1): 300004.
[14] QI Q C, KE H Z, YE L.Ternary organic solar cells featuring polythiophene[J]. Energy materials, 2022, 2(5): 35.
[15] YANG M Q, WEI W K, ZHOU X, et al.Non-fused ring acceptors for organic solar cells[J]. Energy materials, 2022, 1(1): 100008.
[16] MASSIOT I, CATTONI A, COLLIN S.Progress and prospects for ultrathin solar cells[J]. Nature energy, 2020, 5: 959-972.
[17] National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart [EB/OL]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies. pdf.(2023-08-29).
[18] CHANG N L, HO-BAILLIE A W Y, VAK D, et al. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes[J]. Solar energy materials and solar cells, 2018, 174: 314-324.
[19] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[20] CAI M L, WU Y Z, CHEN H, et al.Cost-performance analysis of perovskite solar modules[J]. Advanced science, 2016, 4(1): 1600269.
[21] National Renewable Energy Laboratory (NREL). Simple levelized cost of energy (LCOE) calculator documentation [EB/OL].https://www.nrel.gov/analysis/tech-lcoe-docume ntation.html.
[22] SEO S, JEONG S, PARK H, et al.Atomic layer deposition for efficient and stable perovskite solar cells[J]. Chemical communications, 2019, 55(17): 2403-2416.
[23] GIORDANO F, ABATE A, CORREA BAENA J P, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J]. Nature communications, 2016, 7: 10379.
[24] JIANG Q, ZHANG L Q, WANG H L, et al.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3- based perovskite solar cells[J]. Nature energy, 2016, 2: 16177.
[25] TAN B E, RAGA S R, CHESMAN A S R, et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%[J]. Advanced energy materials, 2019, 9(32): 1901519.
[26] JUNG E H, JEON N J, PARK E Y, et al.Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567(7749): 511-515.
[27] YANG G, NI Z Y, YU Z J, et al.Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells[J]. Nature photonics, 2022, 16: 588-594.
[28] XIE Y M, YAO Q, XUE Q F, et al.Subtle side chain modification of triphenylamine-based polymer hole-transport layer materials produces efficient and stable inverted perovskite solar cells[J]. Interdisciplinary materials, 2022, 1(2): 281-293.
[29] XIONG J, QI Y F, ZHANG Q Q, et al.Enhanced moisture and water resistance in inverted perovskite solar cells by poly(3-hexylthiophene)[J]. ACS applied energy materials, 2021, 4(2): 1815-1823.
[30] HAN W B, REN G H, LIU J M, et al.Recent progress of inverted perovskite solar cells with a modified PEDOT: PSS hole transport layer[J]. ACS applied materials & interfaces, 2020, 12(44): 49297-49322.
[31] YE F Y, ZHANG S, WARBY J, et al.Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane[J]. Nature communications, 2022, 13(1): 7454.
[32] LIU D Y, WANG Q, TRAVERSE C J, et al.Impact of ultrathin C60 on perovskite photovoltaic devices[J]. ACS nano, 2018, 12(1): 876-883.
[33] KAKAVELAKIS G, MAKSUDOV T, KONIOS D, et al.Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer[J]. Advanced energy materials, 2017, 7(7): 1602120.
[34] LIN X S, CUI D Y, LUO X H, et al.Efficiency progress of inverted perovskite solar cells[J]. Energy & environmental science, 2020, 13(11): 3823-3847.
[35] LIU Q J, ZHAO Y N, MA Y X, et al.A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature[J]. Journal of materials chemistry A, 2019, 7(31): 18275-18284.
[36] CHIANG C H, NAZEERUDDIN M K, GRÄTZEL M, et al. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells[J]. Energy & environmental science, 2017, 10(3): 808-817.
[37] LIAO H C, GUO P J, HSU C P, et al.Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation[J]. Advanced energy materials, 2017, 7(8): 1601660.
[38] WANG C, TAN G Y, LUO X P, et al.How to fabricate efficient perovskite solar mini-modules in lab[J]. Journal of power sources, 2020, 466: 228321.
[39] CHIANG C H, LIN J W, WU C G.One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module[J]. Journal of materials chemistry A, 2016, 4(35): 13525-13533.
[40] HEO J H, HAN H J, KIM D, et al.Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy & environmental science, 2015, 8(5): 1602-1608.
[41] BU T L, LIU X P, LI J, et al.Dynamic antisolvent engineering for spin coating of 10×10 cm2 perovskite solar module approaching 18%[J]. Solar RRL, 2020, 4(2): 1900263.
[42] HIGUCHI H, NEGAMI T. Largest highly efficient 203 × 203 mm2 CH3NH3PbI3 perovskite solar modules[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RE11.
[43] YANG M J, KIM D H, KLEIN T R, et al.Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization[J]. ACS energy letters, 2018, 3(2): 322-328.
[44] XU M, JI W X, SHENG Y S, et al.Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating[J]. Nano energy, 2020, 74: 104842.
[45] BASHIR A, HAUR L J, SHUKLA S, et al.Cu-doped nickel oxide interface layer with nanoscale thickness for efficient and highly stable printable carbon-based perovskite solar cell[J]. Solar energy, 2019, 182: 225-236.
[46] LIM K S, LEE D K, LEE J W, et al.17% efficient perovskite solar mini-module via hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating[J]. Journal of materials chemistry A, 2020, 8(18): 9345-9354.
[47] HEO J H, LEE M H, JANG M H, et al.Highly efficient CH3NH3PbI3-xClxmixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating[J]. Journal of materials chemistry A, 2016, 4(45): 17636-17642.
[48] TIAN W J, SONG P Q, ZHAO Y P, et al.Monolithic bilayered In2O3 as an efficient interfacial material for high-performance perovskite solar cells[J]. Interdisciplinary materials, 2022, 1(4): 526-536.
[49] RICHARDS D, BURKITT D, PATIDAR R, et al.Predicting a process window for the roll-to-roll deposition of solvent-engineered SnO2 in perovskite solar cells[J]. Materials advances, 2022, 3(23): 8588-8596.
[50] ZHU C, WANG X, LI H X, et al.Stress compensation based on interfacial nanostructures for stable perovskite solar cells[J]. Interdisciplinary materials, 2023, 2(2): 348-359.
[51] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[52] CHEN C S, RAN C X, YAO Q, et al.Screen-printing technology for scale manufacturing of perovskite solar cells[J]. Advanced science, 2023, 10(28): e2303992.

基金

国家自然科学基金(U21A20171; U20A20245); 湖北隆中实验室自主创新基金(2022ZZ-09); 湖北省自然基金委创新群体项目(2023AFA010)

PDF(2075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/