对太阳电池而言,较低的接触电阻率是实现高转换效率的关键参数,特别是对于载流子选择接触的结构,比如晶硅异质结(HJT)太阳电池。接触电阻率(ρc)通常用Cox-Strack方法(简称CSM)或转移长度方法(TLM)计算得到。无论是哪种方法,均需要在特定金属电极图案下测得,而难于在真实的太阳电池器件中测得。对于硅基异质结(HJT)太阳电池而言,接触电阻率(ρc)包含银(Ag)电极与氧化铟锡(ITO)的接触电阻率ρc1,以及ITO与p或n型掺杂非晶硅的隧穿接触电阻率ρc2。为此,要精确测得ρc1和ρc2,需分别制备特定结构以便测量。该文提出一种新的TLM测试方法,在实际的HJT太阳电池器件上,同时测量出电子在Ag/ITO界面的接触电阻率ρc1值2.5~3.1 mΩ•cm2,ITO与n型掺杂非晶硅的隧穿接触电阻率ρc2值21~24 mΩ•cm2。这两个值与文献报道基本一致。
Abstract
For solar cells, low enough contact resistivity is a key parameter for achieving high conversion efficiency, especially for carrier selective contact structures such as crystalline silicon heterojunction (HJT) solar cells. Contact resistivity ρc is usually calculated by Cox Strack method (CSM) or Transfer Length Method (TLM). It is necessary to use some specific metal electrode patterns with either of the methods, which is difficult for real solar cell devices. For silicon heterojunction (HJT) solar cells, contact resistivity ρc consists of the silver electrode and ITO contact resistivity ρc1 and the tunneling contact resistivity ρc2 of ITO with p-or n-type doped amorphous silicon. Therefore, it is necessary to use different specific structures for accurate measurement of ρc1 and ρc2. In this article, we propose a new TLM method using which we could simultaneously measures the electrons contact resistivity between silver electrodes and ITO ρc1, as well as between ITO and n-type doped amorphous silicon ρc2 on actual HJT solar cell devices. The electrons contact resistivity value for ρc2 is 2.5-3.1 mΩ•cm2, and the electron tunneling contact resistivity ρc2 value is 21-24 mΩ•cm2, which are quite consistent with literature reports.
关键词
硅太阳电池 /
异质结 /
接触电阻 /
隧穿接触 /
电子
Key words
silicon solar cells /
heterojunctions /
contact resistance /
tunneling contact /
electron
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HASCHKE J, DUPRE O, BOCCARD M, et al.Silicon heterojunction solar cells: recent technological development and practical aspects-from lab to industry[J]. Solar energy materials and solar cells, 2018, 187: 140-153.
[2] 刘欢, 由甲川, 赵雷, 等. 氢等离子体处理钝化层对高效晶硅异质结太阳电池性能的影响[J]. 太阳能学报, 2022, 43(7): 140-144.
LIU H, YOU J C, ZHAO L, et al.Effect of post-deposition hydrogen plasma treatment to passivation layer on performance of silicon heterojunction solar cell[J]. Acta energiae solaris sinica, 2022, 43(7): 140-144.
[3] 何永才, 董刚强, 张小燕, 等. 高效硅基异质结太阳电池的ITO薄膜研究[J]. 太阳能学报, 2020, 41(4): 1-6.
HE Y C, DONG G Q, ZHANG X Y, et al.Investigation on high quality Ito films used for shj solar cell[J]. Acta energiae solaris sinica, 2020, 41(4): 1-6.
[4] SCHULZE T F, KORTE L, CONRAD E, et al.Electrical transport mechanisms in a-Si: H/c-Si heterojunction solar cells[J]. Journal of applied physics, 2010, 107(2): 023771.
[5] LUDERER C, MESSMER C, HERMLE M, et al.Transport losses at the TCO/a-Si: H/c-Si heterojunction: influence of different layers and annealing[J]. IEEE journal of photovoltaics, 2020, 10(4): 952-958.
[6] BASSET L,FAVRE W,MUNOZ D,et al.Series resistance breakdown of silicon heterojunction solar cells produced on CEA-INES pilot line[R]. Proceeding of 35th european photovoltaics solar energy conference and exhibition, 2018, 721-724.
[7] LACHENAL D, BAETZNER D, FRAMMELSBERGER W, et al.Heterojunction and passivated contacts: a simple method to extract both n/tco and p/tco contacts resistivity[J]. Energy procedia, 2016, 92: 932-938.
[8] 孙彪, 丁阳, 黄志平, 等. 硅异质结太阳电池的TiCxOy电子选择性接触研究[J]. 太阳能学报, 2023, 44(7): 141-146.
SUN B, DING Y, HUANG Z P, et al.Research on TiCxOy electron-seletive contacts for sillicon hetrojuction solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 141-146.
[9] COX R H, STRACK H.Ohmic contacts for GaAs devices[J]. Solid-state electronics, 1967, 10(12): 1213-1218.
[10] EDWARDS W D, HARTMAN W A, TORRENS A B.Specific contact resistance of ohmic contacts to gallium arsenide[J]. Solid-state electronics, 1972, 15(4): 387-392.
[11] SHEPELA A.The specific contact resistance of Pd2Si contacts on n-and p-Si[J]. Solid-state electronics, 1973, 16(4): 477-481.
[12] 陈筑, 刘伟, 徐林, 等. 等间距平行电极电阻测试法[J]. 太阳能学报, 2014, 35(11): 2087-2092.
CHENG Z, LIU W, XU L.The measurement method of contact resistance on same space parallel electrode[J]. Acta energiae solaris sinica, 2014, 35(11): 2087-2092.
[13] REEVES G K, HARRISON H B.Obtaining the specific contact resistance from transmission line model measurements[J]. IEEE electron device letters, 1982, 3(5): 111-113.
[14] BULLOCK J, WAN Y M, HETTICK M, et al.Survey of dopant-free carrier-selective contacts for silicon solar cells[C]//2016 IEEE 43rd Photovoltaic specialists conference (PVSC). Portland, OR, USA, 2016: 210-214.
[15] NOGAY G, SEIF J P, RIESEN Y, et al.Nanocrystalline silicon carrier collectors for silicon heterojunction solar cells and impact on low-temperature device characteristics[J]. IEEE journal of photovoltaics, 2016, 6(6): 1654-1662.
[16] LUDERER C, TUTSCH L, MESSMER C, et al.Influence of TCO and a-Si∶H doping on SHJ contact resistivity[J]. IEEE journal of photovoltaics, 2021, 11(2): 329-336.
[17] MESSMER C, BIVOUR M, LUDERER C, et al.Influence of interfacial oxides at TCO/doped Si thin film contacts on the charge carrier transport of passivating contacts[J]. IEEE journal of photovoltaics, 2020, 10(2): 343-350.
[18] LONG W, YIN S, PENG F G, et al.On the limiting efficiency for silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2021, 231: 111291.
[19] PROCEL P, XU H Y, SAEZ A, et al.The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells[J]. Progress in photovoltaics: research and applications, 2020, 28(9): 935-945.
[20] SCHUBE J, TUTSCH L, FELLMETH T, et al.Low-resistivity screen-printed contacts on indium tin oxide layers for silicon solar cells with passivating contacts[J]. IEEE journal of photovoltaics, 2018, 8(5): 1208-1214.
[21] GEISSBUHLER J, WOLF S, FAES A, et al.Silicon heterojunction solar cells with copper-plated grid electrodes: status and comparison with silver thick-film techniques[J]. IEEE journal of photovoltaics, 2014, 4(4): 1055-1062.