基于金刚线切片的钙钛矿/硅叠层太阳电池

苏诗茜, 应智琴, 陈邢凯, 李鑫, 杨熹, 叶继春

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 23-29.

PDF(3279 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3279 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 23-29. DOI: 10.19912/j.0254-0096.tynxb.2023-1438

基于金刚线切片的钙钛矿/硅叠层太阳电池

  • 苏诗茜1,2, 应智琴2, 陈邢凯3, 李鑫2,4, 杨熹2, 叶继春2
作者信息 +

PEROVSKITE/SILICON TANDEM SOLAR CELLS BASED ON DIAMOND-WIRE SAWN

  • Su Shiqian1,2, Ying Zhiqin2, Chen Xingkai3, Li Xin2,4, Yang Xi2, Ye Jichun2
Author information +
文章历史 +

摘要

提出一种免空穴传输层的策略,将自组装单分子层材料作为钙钛矿活性层的添加剂,通过一步旋涂法直接将钙钛矿薄膜制备在导电基底表面,其中薄膜的质量与均一性都得到改善。进一步地,将该方法应用在低成本的商用金刚线切片上,可在高粗糙度的硅表面制备出覆盖度高、形貌致密、无空洞的钙钛矿薄膜。在光电性能方面,用该方法得到的单结钙钛矿太阳电池的光电转换效率为21%,填充因子高达83%,两端钙钛矿/硅叠层太阳电池的光电转换效率为28%。

Abstract

In this study, a strategy of hole transport layer-free (HTL-free) is proposed. The self-assembled monolayer is used as the additive of perovskite active layer, then the perovskite film is directly deposited on the conductive substrate surface using a one-step spin coating method, and the quality and uniformity of the film are improved. Furthermore, the method is applied to the commercial and low-cost diamond-wire sawn with high surface roughness, resulting in the formation of a perovekite film characterized by high coverage,dense morphoogy, and absence of cavities. In terms of the photoelectric performance, the single-junction perovskite solar cells yield a champion power conversion efficiency (PCE) of 21.3%, with a high fill factor (FF) of over 83%. Finally, a PCE of 28% for perovskite/silicon tandem solar cells based on diamond-wire sawn is demonstrated.

关键词

钙钛矿太阳电池 / 自组装单分子层材料 / 添加剂 / 免空穴传输层 / 金刚线切片 / 钙钛矿/硅叠层太阳电池

Key words

perovskite solar cells / self-assembled monolayers / additives / hole transport layer-free / diamond-wire sawn / perovskite/silicon tandem solar cells

引用本文

导出引用
苏诗茜, 应智琴, 陈邢凯, 李鑫, 杨熹, 叶继春. 基于金刚线切片的钙钛矿/硅叠层太阳电池[J]. 太阳能学报. 2024, 45(4): 23-29 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1438
Su Shiqian, Ying Zhiqin, Chen Xingkai, Li Xin, Yang Xi, Ye Jichun. PEROVSKITE/SILICON TANDEM SOLAR CELLS BASED ON DIAMOND-WIRE SAWN[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 23-29 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1438
中图分类号: TM914.4   

参考文献

[1] 段滨, 黄阳, 朱俊, 等. HBr添加剂获得高质量钙钛矿薄膜[J]. 太阳能学报, 2018, 39(1): 124-127.
DUAN B, HUANG Y, ZHU J, et al.High quality perovskite films obtained by adding hydrobromic acid as additive[J]. Acta energiae solaris sinica, 2018, 39(1): 124-127.
[2] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.
[3] CUI P, QU S J, ZHANG Q, et al.Homojunction perovskite solar cells: opportunities and challenges[J]. Energy materials, 2022, 1(2): 100014.
[4] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[5] XIA Y R, ZHU M F, QIN L N, et al.Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells[J]. Energy materials, 2023, 3(1): 300004.
[6] Best research-cell efficiency chart[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
[7] AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522): 1300-1309.
[8] MISHIMA R, HINO M, KANEMATSU M, et al.28.3% efficient perovskite-silicon tandem solar cells with mixed self-assembled monolayers[J]. Applied physics express, 2022, 15(7): 076503.
[9] HE R, WANG W H, YI Z J, et al.Improving interface quality for 1-cm2 all-perovskite tandem solar cells[J]. Nature, 2023, 618: 80-86.
[10] LI B W, XIANG Y R, JAYAWARDENA K D G I, et al. Tailoring perovskite adjacent interfaces by conjugated polyelectrolyte for stable and efficient solar cells[J]. Solar RRL, 2020, 4(5): 2000060.
[11] YOU J, GUO F, QIU S D, et al.The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification[J]. Journal of energy chemistry, 2019, 38: 192-198.
[12] JU H, MA Y J, CAO Y, et al.Roles of long-chain alkylamine ligands in triple-halide perovskites for efficient NiOx-based inverted perovskite solar cells[J]. Solar RRL, 2022, 6(6): 2101082.
[13] PERERA W H K, MASTEGHIN M G, SHIM H, et al. Modification of hydrophobic self-assembled monolayers with nanoparticles for improved wettability and enhanced carrier lifetimes over large areas in perovskite solar cells[J]. Solar RRL, 2023, 7(17): 2300388.
[14] CHANG X Q, ZHONG J X, YANG G, et al.Targeted passivation and optimized interfacial carrier dynamics improving the efficiency and stability of hole transport layer-free narrow-bandgap perovskite solar cells[J]. Science bulletin, 2023, 68(12): 1271-1282.
[15] TAN Q, LI Z N, LUO G F, et al.Inverted perovskite solar cells using dimethylacridine-based dopants[J]. Nature, 2023, 620: 545-551.
[16] WANG W H, WEI K, YANG L, et al.Dynamic self-assembly of small molecules enables the spontaneous fabrication of hole conductors at perovskite/electrode interfaces for over 22% stable inverted perovskite solar cells[J]. Materials horizons, 2023, 10(7): 2609-2617.
[17] ZHENG X P, LI Z, ZHANG Y, et al.Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells[J]. Nature energy, 2023, 8: 462-472.
[18] LIU J, AYDIN E, YIN J, et al.28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell[J]. Joule, 2021, 5(12): 3169-3186.
[19] CHEN Y, YING Z Q, LI X, et al.Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells[J]. Nano energy, 2022, 100: 107529.
[20] AL-ASHOURI A, MAGOMEDOV A, ROß M, et al.Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & environmental science, 2019, 12(11): 3356-3369.
[21] STOLTERFOHT M, WOLFF C M, AMIR Y, et al.Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells[J]. Energy & environmental science, 2017, 10(6): 1530-1539.
[22] NOEL N K, HABISREUTINGER S N, WENGER B, et al.Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface[J]. Advanced energy materials, 2020, 10(4): 1903231.
[23] SHAHIDUZZAMAN M, WANG L L, FUKAYA S, et al.Ionic liquid-assisted MAPbI3 nanoparticle-seeded growth for efficient and stable perovskite solar cells[J]. ACS applied materials & interfaces, 2021, 13(18): 21194-21206.
[24] SUN J J, SHOU C H, SUN J S, et al.NiOx-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells[J]. Solar RRL, 2021, 5(11): 2100663.
[25] YING Z Q, YANG Z H, ZHENG J M, et al.Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts[J]. Joule, 2022, 6(11): 2644-2661.
[26] WU M, LI X, YING Z Q, et al.Reconstruction of the indium tin oxide surface enhances the adsorption of high-density self-assembled monolayer for perovskite/silicon tandem solar cells[J]. Advanced functional materials, 2023, 33(46): 2304708.
[27] WANG X L, YING Z Q, ZHENG J M, et al.Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion[J]. Nature communications, 2023, 14: 2166.
[28] YAN N, GAO Y, YANG J J, et al.Wide-bandgap perovskite solar cell using a fluoride-assisted surface gradient passivation strategy[J]. Angewandte chemie international edition, 2023, 62(11): e202216668.

基金

宁波市重点研发计划项目(2023Z151); 国家自然科学基金(62204245); 浙江省重点项目(2021C04009); 浙江省重点研发计划(2022C01215)

PDF(3279 KB)

Accesses

Citation

Detail

段落导航
相关文章

/