含碳捕集电厂-电转气-液化天然气协同的综合能源系统优化调度

骆钊, 杨林燕, 王华, 张杨, 沈鑫, 郑丽

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 438-448.

PDF(1366 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1366 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 438-448. DOI: 10.19912/j.0254-0096.tynxb.2023-1439

含碳捕集电厂-电转气-液化天然气协同的综合能源系统优化调度

  • 骆钊1, 杨林燕1, 王华2, 张杨1, 沈鑫3, 郑丽1
作者信息 +

OPTIMIZATION AND SCHEDULING OF INTEGRATED ENERGY SYSTEM WITH CARBON CAPTURE POWEWR PLANT, ELECTRICITY TO GAS AND LIQUEFIED NATURAL GAS SYNERGY

  • Luo Zhao1, Yang Linyan1, Wang Hua2, Zhang Yang1, Shen Xin3, Zheng Li1
Author information +
文章历史 +

摘要

为解决能源转型过程中面临的碳排放量高、供气不足等难题,提出一种含碳捕集电厂-电转气-液化天然气协同的综合能源系统优化调度模型。首先,考虑碳捕集电厂和电转气设备的“碳耦合”以及液化天然气站的“电-气耦合”,构建含碳捕集电厂-电转气-液化天然气的电气热综合能源系统模型;其次,引入阶梯型碳交易机制,提出碳捕集电厂-电转气-液化天然气协同运行的综合能源系统低碳经济调度模型;最后,以云南某大型工业园区为例,验证所提模型能够有效提高系统的风光消纳水平和能源利用效率,具有显著的低碳经济效益。

Abstract

Promoting the utilization of carbon capture power plants and liquefied natural gas contributes to addressing the challenges of high carbon emissions and inadequate gas supply in China's low-carbon energy transition. Therefore, this paper proposes an optimized scheduling model for an integrated energy system involving the synergy of carbon capture power plants, power-to-gas, and liquefied natural gas. Firstly, considering the “carbon coupling” of carbon capture power plants and power-to-gas equipment, as well as the "electric-gas coupling" of liquefied natural gas stations, an electricity-gas-thermal integrated energy system model is constructed, encompassing carbon capture power plants, power-to-gas, and liquefied natural gas. Secondly, by introducing a stepped carbon trading mechanism, a low-carbon economic scheduling model is proposed for the coordinated operation of an integrated energy system involving carbon capture power plants, power-to-gas, and liquefied natural gas. Finally, using a large industrial park in Yunnan province as a case study, it was confirmed that the proposed model can effectively enhance the integration of wind and solar energy into the system and improve energy utilization efficiency, resulting in significant low-carbon economic benefits.

关键词

碳捕集 / 液化天然气 / 综合能源系统 / 碳交易 / 电转气

Key words

carbon capture / liquefied natural gas / integrated energy system / carbon trading / power-to-gas

引用本文

导出引用
骆钊, 杨林燕, 王华, 张杨, 沈鑫, 郑丽. 含碳捕集电厂-电转气-液化天然气协同的综合能源系统优化调度[J]. 太阳能学报. 2025, 46(1): 438-448 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1439
Luo Zhao, Yang Linyan, Wang Hua, Zhang Yang, Shen Xin, Zheng Li. OPTIMIZATION AND SCHEDULING OF INTEGRATED ENERGY SYSTEM WITH CARBON CAPTURE POWEWR PLANT, ELECTRICITY TO GAS AND LIQUEFIED NATURAL GAS SYNERGY[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 438-448 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1439
中图分类号: TM734   

参考文献

[1] 邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(2): 233-247.
ZOU C N, HE D B, JIA C Y, et al.Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta petrolei sinica, 2021, 42(2): 233-247.
[2] 邹才能, 马锋, 潘松圻, 等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发, 2023, 50(3): 633-647.
ZOU C N, MA F, PAN S Q, et al.Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum exploration and development, 2023, 50(3): 633-647.
[3] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[4] 彭元, 娄素华, 吴耀武, 等. 考虑储液式碳捕集电厂的含风电系统低碳经济调度[J]. 电工技术学报, 2021, 36(21): 4508-4516.
PENG Y, LOU S H, WU Y W, et al.Low-carbon economic dispatch of power system with wind power considering solvent-storaged carbon capture power plant[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4508-4516.
[5] 寇洋, 武家辉, 张华, 等. 考虑碳捕集与CVaR的电力系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51(11): 131-140.
KOU Y, WU J H, ZHANG H, et al.Low carbon economic dispatch for a power system considering carbon capture and CVaR[J]. Power system protection and control, 2023, 51(11): 131-140.
[6] 王义军, 李梦涵, 齐岩. 计及碳捕集电厂综合灵活运行方式的含P2G综合能源系统低碳经济调度[J]. 电力自动化设备, 2023, 43(1): 1-8.
WANG Y J, LI M H, QI Y.Low-carbon economic dispatching of integrated energy system with P2G considering comprehensive and flexible operation mode of carbon capture power plant[J]. Electric power automation equipment, 2023, 43(1): 1-8.
[7] 刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(1): 31-40.
LIU Y, HU Z J, CHEN J P, et al.Low-carbon economic dispatch of integrated energy system considering carbon capture power plant and multi-utilization of hydrogen energy[J]. Automation of electric power systems, 2024, 48(1): 31-40.
[8] 韩丽, 王冲, 于晓娇, 等. 考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J]. 电工技术学报, 2024, 39(7): 2033-2045.
HAN L, WANG C, YU X J, et al.Low-carbon and economic dispatch considering the carbon capture power plants with flexible adjustment of wind power ramp[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2033-2045.
[9] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷” 低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355.
TIAN F, JIA Y B, REN H Q, et al.“Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power system technology, 2020, 44(9): 3346-3355.
[10] 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886, 6163.
CUI Y, DENG G B, ZENG P, et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163.
[11] 刘晓军, 聂凡杰, 杨冬锋, 等. 碳捕集电厂-电转气联合运行模式下考虑绿证-碳交易机制的综合能源系统低碳经济调度[J]. 电网技术, 2023, 47(6): 2207-2222.
LIU X J, NIE F J, YANG D F, et al.Low carbon economic dispatch of integrated energy systems considering green certificates-carbon trading mechanism under CCPP-P2G joint operation model[J]. Power system technology, 2023, 47(6): 2207-2222.
[12] 周伟, 孙永辉, 谢东亮, 等. 计及改进阶梯型碳交易和热电联产机组灵活输出的园区综合能源系统低碳调度[J]. 电网技术, 2024, 48(1): 61-73.
ZHOU W, SUN Y H, XIE D L, et al.Low-carbon dispatch of park-level integrated energy system considering the improved ladder-type carbon trading and flexible output of combined heat and power unit[J]. Power system technology, 2024, 48(1): 61-73.
[13] 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6): 2185-2198.
ZOU Y H, ZENG A D, HAO S P, et al.Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power system technology, 2023, 47(6): 2185-2198.
[14] 李卫东, 张力兵, 齐大伟, 等. 考虑零碳排放的电-气综合能源系统日前优化调度[J]. 太阳能学报, 2023, 44(6): 145-151.
LI W D, ZHANG L B, QI D W, et al.Day-ahead optimal dispatch of electric-gas integrated energy systems considering zero-carbon emissions[J]. Acta energiae solaris sinica, 2023, 44(6): 145-151.
[15] 胡福年, 周小博, 张彭成, 等. 计及碳捕集的综合能源系统低碳经济优化调度[J]. 太阳能学报, 2024, 45(3): 419-427.
HU F N, ZHOU X B, ZHANG P C, et al.Low carbon economy optimal dispatching of integrated energy system taking into account carbon capture[J]. Acta energiae solaris sinica, 2024, 45(3): 419-427.
[16] 吴江, 王晶晶, 张强, 等. 考虑电转气消纳风电的电-气综合能源系统两阶段鲁棒协同调度[J]. 太阳能学报, 2022, 43(2): 436-443.
WU J, WANG J J, ZHANG Q, et al.Two-stage robust cooperative scheduling for electricity-gas integrated energy system considering power-to-gas for wind power accommodation[J]. Acta energiae solaris sinica, 2022, 43(2): 436-443.
[17] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五” 天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182.
ZHOU S H, WANG J, LIANG Y.Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural gas industry, 2021, 41(2): 171-182.
[18] 王超, 孙恒, 李兆慈, 等. LNG冷能发电制氢及液化的综合能源系统研究[J]. 石油与天然气化工, 2022, 51(2): 46-52.
WANG C, SUN H, LI Z C, et al.Research on integrated energy system for hydrogen production and liquefaction from LNG cold energy generation[J]. Chemical engineering of oil & gas, 2022, 51(2): 46-52.
[19] 靳小静, 黄永. 现阶段我国LNG冷能回收利用现状及分析[J]. 江西化工, 2022, 38(4): 64-67.
JIN X J, HUANG Y.The present situation and analysis of LNG cold energy recycling in China[J]. Jiangxi chemical industry, 2022, 38(4): 64-67.
[20] 李俊, 陈煜. LNG冷能回收及梯级利用研究进展[J]. 制冷学报, 2022, 43(2): 1-12.
LI J, CHEN Y.Research progress of cold energy recovery and cascade utilization of LNG[J]. Journal of refrigeration, 2022, 43(2): 1-12.
[21] 康丽虹, 贾燕冰, 田丰, 等. 含LNG冷能利用的综合能源系统低碳经济调度[J]. 高电压技术, 2022, 48(2): 575-584.
KANG L H, JIA Y B, TIAN F, et al.Low-carbon economic dispatch of integrated energy system containing LNG cold energy utilization[J]. High voltage engineering, 2022, 48(2): 575-584.
[22] 潘本艺, 杨帆, 周莉, 等. 液化天然气冷能利用的联合动力循环[J]. 高校化学工程学报, 2021, 35(4): 702-710.
PAN B Y, YANG F, ZHOU L, et al.Combined power cycle for cold energy utilization of liquefied natural gas[J]. Journal of Chemical engineering of Chinese universities, 2021, 35(4): 702-710.
[23] 冯明杰, 王登亮, 赵梅玉, 等. 耦合液化天然气压力能的CCHP系统构建及优化[J]. 东北大学学报(自然科学版), 2022, 43(6): 827-834.
FENG M J, WANG D L, ZHAO M Y, et al.Construction and optimization of CCHP system coupled with LNG pressure energy[J]. Journal of Northeastern University (natural science), 2022, 43(6): 827-834.
[24] 曹龙. 影响液化天然气气化率的因素及控制措施[J]. 化工设计通讯, 2021, 47(11): 143-144.
CAO L.Factors affecting the gasification rate of liquefied natural gas and control measures[J]. Chemical engineering design communications, 2021, 47(11): 143-144.
[25] 金鑫. 天然气液化技术及其应用策略[J]. 中国石油和化工标准与质量, 2023, 43(7): 149-151.
JIN X.Natural gas liquefaction technology and its application strategy[J]. China petroleum and chemical standard and quality, 2023, 43(7): 149-151.

基金

国家重点研发计划(2022YFB2703500); 国家自然科学基金(52277104); 云南省重点研发计划(202303AC100003); 云南省应用基础研究计划(202201AT070220)

PDF(1366 KB)

Accesses

Citation

Detail

段落导航
相关文章

/