1,1'-磺酰基双(2-甲基-1H-咪唑)对宽带隙钙钛矿太阳电池性能的影响

戴峣, 王鹏阳, 赵颖, 张晓丹

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 43-50.

PDF(2172 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2172 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 43-50. DOI: 10.19912/j.0254-0096.tynxb.2023-1441

1,1'-磺酰基双(2-甲基-1H-咪唑)对宽带隙钙钛矿太阳电池性能的影响

  • 戴峣1~4, 王鹏阳1~4, 赵颖1~4, 张晓丹1~4
作者信息 +

INFLUENCE OF 1,1 '-SULFONYL BIS (2-METHYL-1H-IMIDAZOLE) ON PERFORMANCE OF WIDE-BAND GAP PEROVSKITE SOLAR CELLS

  • Dai Yao1~4, Wang Pengyang1~4, Zhao Ying1~4, Zhang Xiaodan1~4
Author information +
文章历史 +

摘要

对倒置结构,带隙为1.68 eV的钙钛矿太阳电池光吸收层掺杂1,1'-磺酰基双(2-甲基-1H-咪唑),以改善钙钛矿薄膜质量,提高太阳电池性能。空间电荷限制电流(SCLC)测试结果表明,掺杂后的钙钛矿薄膜的缺陷密度明显降低;稳态光致发光光谱(PL)结果表明,掺杂后的钙钛矿薄膜的非辐射复合被显著抑制;最终太阳电池的开路电压达到1.17 V,光电转换效率达到21.42%,在氮气环境下储存1000 h后,未封装的太阳电池仍能保持初始效率的96%,稳定性显著提高。

Abstract

In this work, 1,1'-sulfonyl bis (2-methyl-1H-imidazole) was doped into the light absorption layer of inverted structure perovskite solar cells with a band gap of ~1.68 eV, resulting in improved film quality and device performance. Space charge limited current (SCLC) testing results reveal that the defect density of doped perovskite films decreases significantly, while the steady-state photoluminescence (PL) analysis demonstrates that non-radiative recombination is significantly inhibited. The open-circuit voltage reaches 1.17 V and the photoelectric conversion efficiency achieves 21.42%. The unpackaged device can still maintain 96% of the initial efficiency, and the stability is significantly improved after being stored in nitrogen environment for 1000 hours.

关键词

钙钛矿太阳电池 / 晶体生长 / 宽带隙半导体 / 钝化 / 1,1'-磺酰基双(2-甲基-1H-咪唑)

Key words

perovskite solar cells / crystal growth / wide band gap semiconductors / passivation / 1,1'-sulfonylbis(2-methyl-1 H-imidazole)

引用本文

导出引用
戴峣, 王鹏阳, 赵颖, 张晓丹. 1,1'-磺酰基双(2-甲基-1H-咪唑)对宽带隙钙钛矿太阳电池性能的影响[J]. 太阳能学报. 2024, 45(4): 43-50 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1441
Dai Yao, Wang Pengyang, Zhao Ying, Zhang Xiaodan. INFLUENCE OF 1,1 '-SULFONYL BIS (2-METHYL-1H-IMIDAZOLE) ON PERFORMANCE OF WIDE-BAND GAP PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 43-50 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1441
中图分类号: TM914.4   

参考文献

[1] 赵鑫. 酰胺类多功能界面材料用于高效稳定倒置钙钛矿太阳能电池[D]. 广州: 广东工业大学, 2023.
ZHAO X.Application of amide multifunctional interface materials in efficient and stable inverted perovskite solar cells[D]. Guangzhou: Guangdong University of Technology, 2023.
[2] DONG R, FANG Y J, CHAE J, et al.High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites[J]. Advanced materials, 2015, 27(11): 1912-1918.
[3] ZHENG J H, MEHRVARZ H, LIAO C, et al.Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material[J]. ACS energy letters, 2019, 4(11): 2623-2631.
[4] CUI P, QU S J, ZHANG Q, et al.Homojunction perovskite solar cells: opportunities and challenges[J]. Energy materials, 2022, 1(2): 100014.
[5] SHI Y R, WANG K L, LOU Y H, et al.Light-triggered sustainable defect-passivation for stable perovskite photovoltaics[J]. Advanced materials, 2022, 34(50): 2205338.
[6] LEE J W, PARK N G.Chemical approaches for stabilizing perovskite solar cells[J]. Advanced energy materials, 2020, 10(1): 1903249.
[7] XIA Y, ZHU M F, QIN L N, et al.Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells[J]. Energy materials, 2023, 3(1): 300004.
[8] NICKEL N H, LANG F, BRUS V V, et al.Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films[J]. Advanced electronic materials, 2017, 3(12): 1700158.
[9] WANG Z W, ZENG L W, ZHU T, et al.Suppressed phase segregation for triple-junction perovskite solar cells[J]. Nature, 2023, 618(7963): 74-79.
[10] LIU K, RAFIQUE S, MUSOLINO S F, et al.Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells[J]. Joule, 2023, 7(5): 1033-1050.
[11] CHEN S S, DENG Y H, GU H Y, et al.Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins[J]. Nature energy, 2020, 5: 1003-1011.
[12] XIAO X, WANG M X, CHEN S S, et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable,lead-safe perovskite modules[J]. Science advances, 2021, 7(44): eabi8249.
[13] XU Y M, GUO X, LIN Z H, et al.Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells[J]. Angewandte chemie-international edition, 2023, 62(33): e202306229.
[14] TU Y B, LI G D, YE J C, et al.Multifunctional imidazolidinyl urea additive initiated complex with PbI2 toward efficient and stable perovskite solar cells[J/OL]. Small, [2023-12-06].https://doi.org/10.1002/smll. 202309033.
[15] WANG Y, YANG Y, HAN D W, et al.Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells[J]. Solar energy materials and solar cells, 2020, 212(1): 110553.
[16] SHAHIDUZZAMAN M, WANG L L, FUKAYA S, et al.Ionic liquid-assisted MAPbI3 nanoparticle-seeded growth for efficient and stable perovskite solar cells[J]. ACS applied materials & interfaces, 2021, 13(18): 21194-21206.
[17] LI R J, CHEN B B, REN N Y, et al.CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells[J]. Advanced Materials, 2022, 34(27): e2201451.
[18] LI Z J, WU M Z, YANG L, et al.24.64%-efficiency MA-free perovskite solar cell with Voc of 1.19 V enabled by a hinge-type fluorine-rich complex[J]. Advanced functional materials, 2023, 33(11): 2212606.
[19] 李鹏, 李娜. 氟代呋喃-噻吩齐聚物的合成与表征[J]. 科技创新导报, 2014, 11(36): 82-86.
LI P, LI N. synthesis and characterization of fluorinated furan-thiophene oligomers[J]. Science and technology innovation herald, 2014, 11(36): 82-86.
[20] DENG Y H, XU S, CHEN S S, et al.Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability[J]. Nature energy, 2021, 6: 633-641.
[21] 杜林, 彭长涛, 唐宇,等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica,2022, 43(9): 73-77.
[22] 张鑫亮,马忠权, 刘正新. 连续旋涂提高钙钛矿太阳电池开路电压的研究[J]. 太阳能学报, 2018, 39(6): 1588-1594.
ZHANG X L, MA Z Q, LIU Z X.Improve open-circuit voltage of perovskite solar cell by succesive spin-coating[J]. Acta energiae solaris sinica, 2018, 39(6): 1588-1594.
[23] 崔兴华, 许巧静, 石标, 等. 宽带隙钙钛矿材料及太阳电池的研究进展[J]. 物理学报, 2020, 69(20): 143-163.
CUI X H, XU Q J, SHI B,et al.Research progress of wide bandgap perovskite materials and solar cells[J]. Acta physica sinica, 2020, 69(20): 143-163.
[24] BI D Q, YI C Y, LUO J S, et al.Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature energy, 2016, 1(10): 16142.
[25] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[26] GUNASEKARAN R K, CHINNADURAI D, SELVARAJ A R, et al.Revealing the self-degradation mechanisms in methylammonium lead iodide perovskites in dark and vacuum[J]. Chemphyschem: a European journal of chemical physics and physical chemistry, 2018, 19(12): 1507-1513.
[27] 邓文斌. 低温制备柔性钙钛矿太阳能电池的研究[D]. 成都: 电子科技大学, 2021.
DENG W B.Study on the preparation of flexible perovskite solar cells at low temperature processing[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[28] 沈百慧. 钙钛矿太阳能电池中载流子传输的研究[D]. 宁波: 宁波大学, 2019.
SHEN B H.Study on carrier transport of perovskite solar cells[D]. Ningbo: Ningbo University, 2019.
[29] SU G F, YU R N, DONG Y M, et al.Crystallization regulation and defect passivation for efficient inverted wide-bandgap perovskite solar cells with over 21% efficiency[J]. Advanced energy materials, 2024, 14(4): 2303344.
[30] YE J Y, TONG J H, HU J, et al.Enhancing charge transport of 2D perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%[J]. Solar RRL, 2020, 4(6): 2070065.
[31] XU J X, BOYD C C, YU Z J, et al.Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science, 2020, 367(6482): 1097-1104.
[32] AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522): 1300-1309.
[33] FU X L, HE T W, ZHANG S F, et al.Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics[J]. Chem, 2021, 7(11): 3131-3143.
[34] SONG Z L, YANG J, DONG X Y, et al.Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss[J]. Nano letters, 2023, 23(14): 6705-6712.

基金

国家自然科学基金(62274099); 高等教育学科创新海外人才引进项目(B16027); 海河可持续化学转化实验室、南开大学中央高校基本科研业务费

PDF(2172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/