纳米结构金属氧化物电子传输层研究进展

靳迦惠, 杨鑫炫, 范琳, 杨丽丽, 杨景海, 王奉友

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 36-42.

PDF(2887 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2887 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 36-42. DOI: 10.19912/j.0254-0096.tynxb.2023-1442

纳米结构金属氧化物电子传输层研究进展

  • 靳迦惠, 杨鑫炫, 范琳, 杨丽丽, 杨景海, 王奉友
作者信息 +

RESEARCH PROGRESS IN ELECTRON TRANSPORT LAYERS OF NANOSTRUCTURED METAL OXIDE

  • Jin Jiahui, Yang Xinxuan, Fan Lin, Yang Lili, Yang Jinghai, Wang Fengyou
Author information +
文章历史 +

摘要

总结纳米结构金属氧化物在钙钛矿太阳电池中的应用进展,详细介绍纳米结构金属氧化物(包括二氧化钛、氧化锌和二氧化锡等)作为电子传输材料的实例。此外,对纳米结构金属氧化物电子传输层进行掺杂和界面修饰等方面的研究进展加4个介绍。最后,对该类电子传输层的未来发展前景进行展望。

Abstract

This article reviews the metal oxides used in the electron transfer layer of perovskite solar cells, introduces three commonly used electron transfer materials: titanium dioxide, zinc oxide, and tin dioxide, as well as research on doping and interface modification of electron transfer layers, and looks forward to future development prospects.

关键词

钙钛矿太阳电池 / 光吸收 / 形貌 / 纳米结构 / 电子传输层

Key words

perovskite solar cells / light absorption / morphology / nanostructure / electron transport layer

引用本文

导出引用
靳迦惠, 杨鑫炫, 范琳, 杨丽丽, 杨景海, 王奉友. 纳米结构金属氧化物电子传输层研究进展[J]. 太阳能学报. 2024, 45(4): 36-42 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1442
Jin Jiahui, Yang Xinxuan, Fan Lin, Yang Lili, Yang Jinghai, Wang Fengyou. RESEARCH PROGRESS IN ELECTRON TRANSPORT LAYERS OF NANOSTRUCTURED METAL OXIDE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 36-42 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1442
中图分类号: TM914.4   

参考文献

[1] KIM J Y, LEE J W, JUNG H S, et al.High-efficiency perovskite solar cells[J]. Chemical reviews, 2020, 120(15): 7867-7918.
[2] Best research-cell efficiency chart, photovoltaic research NREL[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html(accessed 18 July2023).
[3] DUAN L R, ZHANG H, EICKEMEYER F T, et al.CsPbBr3 quantum dots-sensitized mesoporous TiO2 electron transport layers for high-efficiency perovskite solar cells[J]. Solar RRL, 2023, 7(11): 2370114.
[4] GARTNER M, SZEKERES A, STROESCU H, et al.Advanced nanostructured coatings based on doped TiO2 for various applications[J]. Molecules, 2023, 28(23): 7828.
[5] DA SILVA A L, TRINDADE F J, DALMASSO J L, et al. Synthesis of TiO2 microspheres by ultrasonic spray pyrolysis and photocatalytic activity evaluation[J]. Ceramics international, 2022, 48(7): 9739-9745
[6] GAUTAM J, YANG J M, YANG B L.Transition metal Co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2022, 643: 128786.
[7] RAWAT N, BENČINA M, GONGADZE E, et al. Fabrication of antibacterial TiO2 nanostructured surfaces using the hydrothermal method[J]. ACS omega, 2022, 7(50): 47070-47077.
[8] FADOJUTIMI P, MASEMOLA C, NKABINDE S S, et al.Room temperature sensing of alcohol vapours using novel radially aligned nanorutile titania[J]. Sensors and actuators reports, 2023, 5: 100154.
[9] KIM H S, LEE J W, YANTARA N, et al.High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano letters, 2013, 13(6): 2412-2417.
[10] MALI S S, SHIM C S, PARK H K, et al.Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells[J]. Chemistry of materials, 2015, 27(5): 1541-1551.
[11] 李瑞. 基于TiO2纳米棒阵列结构钙钛矿太阳能电池材料的制备与性能优化[D]. 北京: 北京科技大学, 2021.
LI R.Preparation and performance optimization of perovskite solar cell materials based on TiO2 nanorod arrays[D]. Beijing: University of Science and Technology Beijing, 2021.
[12] BHOOMANEE C, SANGLAO J, KUMNORKAEW P, et al.Hydrothermally treated TiO2 nanorods as electron transport layer in planar perovskite solar cells[J]. Physica status solidi (a), 2021, 218(1): 2000238-2000246.
[13] NGUYEN M H, YOON S H, KIM K S.Surface modification of electron transport layers based on TiO2 nanorod boosts efficiency of perovskite solar cells[J]. AIChE journal, 2023, 69(2): e17958-e17970.
[14] MOURAD S, EL GHOUL J, KHIROUNI K.Role of indium doping on structural and electrical properties of ZnO nanoparticles prepared by sol-gel method[J]. Journal of materials science: materials in electronics, 2020, 31(8): 6372-6384.
[15] GOMAA M M, SAYED M H, BOSHTA M.Engineering of NiO/ZnO core-shell nanostructure via facile chemical processes for environmental application[J]. ECS Journal of solid state science and technology, 2023, 12(2): 023002.
[16] WANG C H.Triethylamine sensing properties of ZnO nanostructures prepared by hydrothermal method at different pH values[J]. Chemical physics letters, 2020, 749: 137471.
[17] AHMED M, COETSEE L, GOOSEN W E, et al.Characterization of Bi-doped ZnO nanorods prepared by chemical bath deposition method[J]. Physica B: condensed matter, 2023, 666: 415105.
[18] 王晓春, 孙钦军, 高利岩, 等. 电纺AZO NWs电子传输层提高钙钛矿太阳电池性能的研究[J]. 太阳能学报, 2022, 43(1): 369-374.
WANG X C, SUN Q J, GAO L Y, et al.Study on performance enhancement of perovskite solar cells via electrospun AZO NWs as electronic transport layer[J]. Acta energiae solaris sinica, 2022, 43(1): 369-374.
[19] BI D Q, BOSCHLOO G, SCHWARZMÜLLER S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells[J]. Nanoscale, 2013, 5(23): 11686-11691.
[20] 奚洪亮, 王莉, 陈克正. ZnO:Al纳米柱阵列的制备及其在有机固态钙钛矿太阳能电池中的应用[J]. 青岛科技大学学报(自然科学版), 2017, 38(1): 58-62.
XI H L, WANG L, CHEN K Z.Preparation of ZnO:Al nanorods array and application in organic solid perovskite solar cells[J]. Journal of Qingdao University of Science and Technology (natural science edition), 2017, 38(1): 58-62.
[21] 甘一升, 陈苗苗, 王玉龙, 等. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050, 4078.
GAN Y S, CHEN M M, WANG Y L, et al.Hole-transport-layer-free organic-inorganic hybrid perovskite solar cells with ZnO nanorod arrays as electron transport layer[J]. Materials review, 2018, 32(23): 4047-4050, 4078.
[22] SON D Y, IM J H, KIM H S, et al.11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system[J]. The journal of physical chemistry C, 2014, 118(30): 16567-16573.
[23] ESWARAMOORTHY N, RAJARAM K.Planar perovskite solar cells: plasmonic nanoparticles-modified ZnO as an electron transport layer for enhancing the device performance and stability at ambient conditions[J]. International journal of energy research, 2022, 46(8): 10724-10740.
[24] DRYGAŁA A, STAROWICZ Z, GAWLIŃSKA-NĘCEK K, et al. Hybrid mesoporous TiO2/ZnO electron transport layer for efficient perovskite solar cell[J]. Molecules, 2023, 28(15): 5656.
[25] WU P F, WANG S R, LI X G, et al.Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications[J]. Journal of materials chemistry A, 2021, 9(35): 19554-19588.
[26] KOINKAR P, NAKAYAMA D, KATAYAMA T, et al.Photocatalytic studies of tin oxide nanostructures produced by different methods[J]. Modern physics letters B, 2023, 37(16): 2340003.
[27] LACHORE W L, ANDOSHE D M, HONE F G, et al.Structural, optical and electrical properties of copper (Cu) and[nickel (Ni), copper]: Co-doped SnO2 nanoparticles prepared by sol-gel method[J]. Applied physics A, 2022, 128(6): 515.
[28] SMOK W, TAŃSKI T, DRYGAŁA A, et al. Facile route to prepare hybrid TiO2-SnO2 DSSCs[J]. Applied surface science, 2022, 605: 154850-154862.
[29] RUBIN PEDRAZZO A, CECONE C, MORANDI S, et al.Nanosized SnO2 prepared by electrospinning: influence of the polymer on both morphology and microstructure[J]. Polymers, 2021, 13(6): 977.
[30] YELZHANOVA Z, NIGMETOVA G, AIDARKHANOV D, et al.A morphological study of solvothermally grown SnO2 nanostructures for application in perovskite solar cells[J]. Nanomaterials, 2022, 12(10): 1686.
[31] ZHU Z L, ZHENG X L, BAI Y, et al.Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells[J]. Physical chemistry chemical physics, 2015, 17(28): 18265-18268.
[32] 朱峰. 聚苯胺/二氧化锡纳米棒阵列的制备及电化学性能研究[D]. 南京: 东南大学, 2017.
ZHU F.Synthesis and electrochemical performance of polyaniline/TiN oxide nanorod array[D]. Nanjing: Southeast University, 2017.
[33] QIN M C, MA J J, KE W J, et al.Perovskite solar cells based on low-temperature processed indium oxide electron selective layers[J]. ACS applied materials & interfaces, 2016, 8(13): 8460-8466.
[34] CHEN X, SHI Z, PAN G, et al.Boosting interfacial charge transfer by constructing rare earth-doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells[J]. Materials today energy, 2021, 21: 100724.
[35] SUN B, CHEN H, YAN K, et al.Numerical investigation of the Cu2O solar cell with double electron transport layers and a hole transport layer[J]. Optical materials, 2022, 131: 112642.
[36] CHEN J, YANG H, XU C M, et al.Preparation of ZrO2 microspheres by spray granulation[J]. Powder technology, 2021, 385: 234-241.
[37] 谢倩祎, 程爱华. MOFs衍生多孔TiO2/C、N掺杂Fe2O3复合材料的制备及其光催化性能[J]. 太阳能学报, 2024, 45(1): 47-55.
XIE Q Y, CHENG A H.Prepation and photocatailtic properties of MOFs-derived porous TiO2/C and N-doped Fe2O3 composites[J]. Acta energiae solaris sinica, 2024, 45(1): 47-55.
[38] 杨雯, 赵飞, 张志恒, 等. B掺杂SiCx基硅量子点薄膜的结构和电学特性研究[J]. 太阳能学报, 2021, 42(10): 76-79.
YANG W, ZHAO F, ZHANG Z H, et al.Study on structural and electrical properties of B-doped SiCx silicon quantum dots thin films[J]. Acta energiae solaris sinica, 2021, 42(10): 76-79.
[39] 吴亭亭. 钙钛矿和氧化亚铜太阳能电池用TiO2电子传输层的构建与性能研究[D]. 合肥: 中国科学技术大学, 2019.
WU T T.Construction of TiO2-based electron transport layers in perovskite and cuprous oxide solar cells[D]. Hefei: University of Science and Technology of China, 2019.
[40] WANG H H, CHEN Q, ZHOU H P, et al.Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives[J]. Journal of materials chemistry A, 2015, 17(3): 9108-9115.
[41] WANG J T W, BALL J M, BAREA E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano letters, 2014, 14(2): 724-730.
[42] JIANG Z, HE Z K, MA S Y, et al.Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple-cation perovskite solar cells[J]. The Journal of physical chemistry C, 2023, 127(39): 19432-19439.
[43] RAJ A, KUMAR M, KUMAR A, et al.Effect of doping engineering in TiO2 electron transport layer on photovoltaic performance of perovskite solar cells[J]. Materials letters, 2022, 313: 131692.
[44] ZHANG X, BAO Z Q, TAO X Y, et al.Sn-doped TiO2 nanorod arrays and application in perovskite solar cells[J]. RSC advances, 2014, 4(109): 64001-64005.
[45] ARSHAD Z, KHOJA A H, SHAKIR S, et al.Magnesium doped TiO2 as an efficient electron transport layer in perovskite solar cells[J]. Case studies in thermal engineering, 2021, 26: 101101.
[46] DAS T, NAG R, RANA N K, et al.Effect of transition metal doping in the ZnO nanorod on the efficiency of the electron transport layer in semitransparent CsPbBr3 perovskite solar cells[J]. Energy & fuels, 2023, 37(14): 10642-10651.
[47] DONG J, ZHAO Y H, SHI J J, et al.Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification[J]. Chemical communications, 2014, 50(87): 13381-13384.
[48] DENG J P, WANG M Q, LIU J, et al.Arrays of ZnO/AZO(Al-doped ZnO)nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells[J]. Advances in colloid and interface science, 2014, 418: 277.
[49] ZHAO C X, SHU J F, FANG J Q, et al.Interface modification using Li-doped hollow titania nanospheres for high-performance planar perovskite solar cells[J]. ACS applied materials & interfaces, 2023, 15(40): 46925-46932.
[50] 张鹏. 基于氧化锌的钙钛矿电池制备与器件性能研究[D]. 成都: 电子科技大学, 2019.
ZHANG P.Research on fabrication and performance of perovskite solar cells based on ZnO materials[D]. Chengdu: University of Electronic Science and Technology of China, 2019.

基金

国家自然科学基金(62275101; 22075101; 11904127); 吉林省科技发展计划(YDZJ202201ZYTS300)

PDF(2887 KB)

Accesses

Citation

Detail

段落导航
相关文章

/