自然降雨驱动的光伏组件清洁周期动态更新策略研究

刘卫东, 吴锦华, 胡珊, 闻海浪

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 615-623.

PDF(1160 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1160 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 615-623. DOI: 10.19912/j.0254-0096.tynxb.2023-1446

自然降雨驱动的光伏组件清洁周期动态更新策略研究

  • 刘卫东, 吴锦华, 胡珊, 闻海浪
作者信息 +

RESEARCH ON DYNAMIC UPDATE STRATEGY OF CLEANING CYCLE FOR PHOTOVOLTAIC MODULES DRIVEN BY EFFECT OF NATURAL RAINFALL

  • Liu Weidong, Wu Jinhua, Hu Shan, Wen Hailang
Author information +
文章历史 +

摘要

提出一种考虑自然降雨对灰尘沉积的清洁效果及其对发电量影响的光伏组件清洁周期的动态分析设计方法。该方法采用关联图法和相关性分析确定影响光伏组件清洁及发电量的主要因素,以此为基础建立降雨量和灰尘沉积的定量关系和考虑灰尘沉积影响的发电量预测模型,再将其应用于动态更新或调整清洁周期。所提出方法应用于浙江省杭州市某光伏电站清洁策略的制定,结果表明清洁周期动态更新策略下的清洁总成本相较于不清洁时降低20.04%,相较于固定清洁周期方法降低3.63%。

Abstract

This article proposes a dynamic analysis and design method for the cleaning cycle of photovoltaic modules which considers the cleaning effect of natural rainfall on dust deposition and its impact on power generation. This method uses the correlation graph method and correlation analysis to determine the main factors affecting the cleanliness and power generation of photovoltaic modules. Based on this, a quantitative relationship between rainfall and dust deposition is established, and a power generation prediction model considering the impact of dust deposition is applied to dynamically update or adjust the cleaning cycle. The proposed method was applied to the formulation of a cleaning strategy for a photovoltaic power plant in Hangzhou, Zhejiang Province. The results showed that the total cleaning cost under the dynamic update strategy of the cleaning cycle was reduced by 20.04% compared to the non-cleaning method, and by 3.63% compared to the fixed cleaning cycle method.

关键词

光伏组件 / 灰尘 / 降雨 / 发电量预测 / 清洁策略

Key words

PV modules / dust / rainfall / power generation forecast / cleaning strategy

引用本文

导出引用
刘卫东, 吴锦华, 胡珊, 闻海浪. 自然降雨驱动的光伏组件清洁周期动态更新策略研究[J]. 太阳能学报. 2025, 46(1): 615-623 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1446
Liu Weidong, Wu Jinhua, Hu Shan, Wen Hailang. RESEARCH ON DYNAMIC UPDATE STRATEGY OF CLEANING CYCLE FOR PHOTOVOLTAIC MODULES DRIVEN BY EFFECT OF NATURAL RAINFALL[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 615-623 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1446
中图分类号: TB114.3   

参考文献

[1] 宁会峰, 程荣展, 王伟志, 等. 积灰对光伏发电的影响及除尘效果实验研究[J]. 太阳能学报, 2020, 41(11): 120-125.
NING H F, CHENG R Z, WANG W Z, et al.Experimental study on influence of dust accumulation on photovoltaic power generation and dust removal effect[J]. Acta energiae solaris sinica, 2020, 41(11): 120-125.
[2] 王平, 杜炜, 张海宁, 等. 表面积灰影响光伏组件泄漏电流与衰减寿命的研究[J]. 太阳能学报, 2019, 40(1): 119-125.
WANG P, DU W, ZHANG H N, et al.Pollution impact on the leakage current and power degradation of photovoltaic modules[J]. Acta energiae solaris sinica, 2019, 40(1): 119-125.
[3] YOUNIS A, ONSA M.A brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the Middle East[J]. Energy reports, 2022, 8: 2334-2347.
[4] ZHAO B, ZHANG S W, CAO S X, et al.Cleaning cycle optimization and cost evaluation of module dust for photovoltaic power plants in China[J]. Clean technologies and environmental policy, 2019, 21(8): 1645-1654.
[5] JIANG Y, LU L, LU H.A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment[J]. Solar energy, 2016, 140: 236-240.
[6] SÁNCHEZ-BARROSO G, GONZÁLEZ-DOMÍNGUEZ J, GARCÍA-SANZ-CALCEDO J, et al. Markov chains estimation of the optimal periodicity for cleaning photovoltaic panels installed in the dehesa[J]. Renewable energy, 2021, 179: 537-549.
[7] MICHELI L, FERNÁNDEZ E F, MULLER M, et al. Extracting and generating PV soiling profiles for analysis, forecasting, and cleaning optimization[J]. IEEE journal of photovoltaics, 2020, 10(1): 197-205.
[8] WANG Z H, XU Z G, LIU B, et al.A hybrid cleaning scheduling framework for operations and maintenance of photovoltaic systems[J]. IEEE transactions on systems, man, and cybernetics: systems, 2022, 52(9): 5925-5936.
[9] 居发礼. 积灰对光伏发电工程的影响研究[D]. 重庆: 重庆大学, 2010.
JU F L.Study on the effect of photovoltaic power generation project by dust[D]. Chongqing: Chongqing University, 2010.
[10] 高瑜, 康兴国, 周少迪, 等. 基于改进BES-LSSVM光伏组件积灰预测[J]. 太阳能学报, 2023, 44(6): 213-219.
GAO Y, KANG X G, ZHOU S D, et al.Ash deposition prediction of photovoltaic modules based on improved BES-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(6): 213-219.
[11] 何旻. 分布式光伏电站中长期发电量影响因素分析及预测方法研究[D]. 杭州: 浙江工业大学, 2020.
HE M.Study on influencing factors and forecasting methods of medium and long-term power generation of distributed PV power stations[D]. Hangzhou: Zhejiang University of Technology, 2020.
[12] THAPAR V.A revisit to solar radiation estimations using sunshine duration: analysis of impact of these estimations on energy yield of a PV generating system[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2023, 45(3): 8356-8380.
[13] LIU W D, LI J K, LI S S, et al.Research on optimum tilt angle of photovoltaic module based on regional clustering of influencing factors of power generation[J]. International journal of energy research, 2021, 45(7): 11002-11017.
[14] 刘卫东, 罗吉, 姜小华, 等. 基于影响因素区域聚类的光伏组件灰尘沉积及其应用研究[J]. 太阳能学报, 2022, 43(1): 375-383.
LIU W D, LUO J, JIANG X H, et al.Studying on region clustering and application of photovoltaic module dust deposition based on its impact factors[J]. Acta energiae solaris sinica, 2022, 43(1): 375-383.
[15] WANG R Z, YAN J C, YANG X K.Neural graph matching network: learning lawler's quadratic assignment problem with extension to hypergraph and multiple-graph matching[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(9): 5261-5279.
[16] SALARI A, HAKKAKI-FARD A.A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems[J]. Renewable energy, 2019, 135: 437-449.
[17] MICHELI L, FERNÁNDEZ E F, ALMONACID F. Photovoltaic cleaning optimization through the analysis of historical time series of environmental parameters[J]. Solar energy, 2021, 227: 645-654.
[18] YAO W X, KONG X R, XU A, et al.New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions[J]. Renewable and sustainable energy reviews, 2023, 173: 113119.
[19] LIU F G, ZHANG Z, ZHAO Y Z, et al.A method of calculating the daily output power reduction of PV modules due to dust deposition on its surface[J]. IEEE journal of photovoltaics, 2019, 9(3): 881-887.
[20] YAO W X, LI Z R, LU Y, et al.New models for separating hourly diffuse and direct components of global solar radiation[C]//Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning: Volume 1: Indoor and Outdoor Environment, Springer Berlin Heidelberg, 2013: 653-663.
[21] AYODELE T R, OGUNJUYIGBE A S O. Prediction of monthly average global solar radiation based on statistical distribution of clearness index[J]. Energy, 2015, 90: 1733-1742.
[22] LAM J C, LI D H W. Correlation between global solar radiation and its direct and diffuse components[J]. Building and environment, 1996, 31(6): 527-535.
[23] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. 4nd ed. New Jersey: John Wiley & Sons, 2013.
[24] SALMI M, BOUZGOU H, AL-DOURI Y, et al.Evaluation of the hourly global solar radiation on a horizontal plane for two sites in Algeria[J]. Advanced materials research, 2014, 925: 641-645.
[25] DEMAIN C, JOURNÉE M, BERTRAND C. Evaluation of different models to estimate the global solar radiation on inclined surfaces[J]. Renewable energy, 2013, 50: 710-721.
[26] YANG D Z.Solar radiation on inclined surfaces: corrections and benchmarks[J]. Solar energy, 2016, 136: 288-302.
[27] MAGARE D, SASTRY O, GUPTA R, et al.Wind effect modeling and analysis for estimation of photovoltaic module temperature[J]. Journal of solar energy engineering, 2018, 140(1): 011008.
[28] MAATALLAH T, EL ALIMI S, BEN NASSRALLAH S.Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia[J]. Renewable and sustainable energy reviews, 2011, 15(8): 4053-4066.
[29] 陈正洪, 孙朋杰, 成驰, 等. 武汉地区光伏组件最佳倾角的实验研究[J]. 中国电机工程学报, 2013, 33(34): 98-105.
CHEN Z H, SUN P J, CHENG C, et al.Experimental research on the optimal tilted angle for PV modules in Wuhan[J]. Proceedings of the CSEE, 2013, 33(34): 98-105.
[30] 陈金鑫, 潘国兵, 欧阳静, 等. 自然降雨下光伏组件积灰预测方法研究[J]. 太阳能学报, 2021, 42(2): 431-437.
CHEN J X, PAN G B, OUYANG J, et al.Study on prediction algorithm of dustfall on PV modules under natural rainfall[J]. Acta energiae solaris sinica, 2021, 42(2): 431-437.
[31] 国家气象科学数据中心[EB/OL]. http://data.cma.cn.
National Meteorological Data Center[EB/OL]. http://data. cma.cn.
[32] WANG Z H, XU Z G, ZHANG Y, et al.Optimal cleaning scheduling for photovoltaic systems in the field based on electricity generation and dust deposition forecasting[J]. IEEE journal of photovoltaics, 2020, 10(4): 1126-1132.
[33] XU R D, NI K, HU Y H, et al.Analysis of the optimum tilt angle for a soiled PV panel[J]. Energy conversion and management, 2017, 148: 100-109.
[34] PELLAND S, REMUND J, KLEISSL J, et al.Photovoltaic and solar forecasting: state of the art[J]. IEA PVPS Task, 2013, 14(355): 1-36.

基金

国家自然科学基金(72361021; 72071099)

PDF(1160 KB)

Accesses

Citation

Detail

段落导航
相关文章

/