为研究水平循环荷载下海上风力机大直径单桩受荷性状,基于水平受荷桩圆锥应变楔模型,构建考虑土体连续性和非线性的p-y曲线模型;考虑大直径单桩尺寸效应,将转动点以下部分等效为转动弹簧,结合土体极限平衡理论确定极限转动抗力矩的表达式,采用双曲线函数表征转动抗力矩与转角的关系,进而提出大直径单桩“p-y+MR-θR”双弹簧计算模型;引入黏土刚度衰减模型,在土体应力-应变关系中实现土体循环加载刚度弱化效应,建立海上风力机大直径单桩水平循环效应计算方法。算例分析表明,该方法的理论计算值与实测值较为吻合,可验证本文计算方法的有效性,为海上风力机单桩基础设计提供理论参考。
Abstract
To study on the bearing behaviour of large-diameter piles of offshore wind turbine under laterally cyclic loading, based on conical strain wedge model of laterally loading pile, the p-y curves model were set up with the soil properties of continuity and nonlinear. Considering the size effect of large-diameter piles, the part below the rotation point was equivalent to the rotating spring. With the ultimate balance theory of the soil, the hyperbola function is used to present the relationship between the rotation resistance torque and the angle, and then the double spring calculation model of “p-y+MR-θR” model for large-diameter piles. The stiffness attenuation model of clay was introduced to establish the calculation method of the laterally cyclic effect of large-diameter piles of offshore wind turbine. The cases analysis show that the theoretical calculated values of this method are relatively consistent with the measured values, which verifies the effectiveness of the simplified calculation method. This study can provide theoretical reference significance for analyzing the loading response of large diameter piles under cyclic loading. This paper can provide theoretical reference for the pile foundation design of offshore wind turbines.
关键词
海上风电 /
桩基础 /
循环荷载 /
承载特性 /
软黏土
Key words
offshore wind turbines /
pile foundation /
cyclic loading /
bearing capacity /
soft clay
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姜贞强, 何奔, 单治钢, 等. 黄海海域极端荷载下海上风力机结构累积变形及疲劳性状: 3种典型基础对比研究[J]. 太阳能学报, 2021, 42(4): 386-395.
JIANG Z Q, HE B, SHAN Z G, et al.Cumulative deformation and fatigue behaviour of offshore wind turbine structure subjected under extreme loading in Yellow Sea: a comparative study between three typical foundations[J]. Acta energiae solaris sinica, 2021, 42(4): 386-395.
[2] 李大勇, 黄凌昰, 吴宇旗, 等. 海上风电裙式吸力基础水平变幅非对称循环承载特性[J]. 太阳能学报, 2023, 44(10): 391-399.
LI D Y, HUANG L X, WU Y Q, et al.Bearing behaviors of modified suction caisson under horizontal variable amplitude and asymmetrical cyclic loads for offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(10): 391-399.
[3] 姜彤, 何天乐, 王璇, 等. 波浪荷载下海上风力机桩基础滞回效应及水平承载力变化特性研究[J]. 太阳能学报, 2024, 45(8): 546-553.
JIANG T, HE T L, WANG X, et al.Study on hysteresis effect and horizontal bearing capacity of pile foundation for offshore wind turbine under wave load[J]. Acta energiae solaris sinica, 2024, 45(8): 546-553.
[4] CHENG X L, WANG T J, ZHANG J X, et al.Finite element analysis of cyclic lateral responses for large diameter monopiles in clays under different loading patterns[J]. Computers and geotechnics, 2021, 134: 104104.
[5] KUO Y S, ACHMUS M, ABDEL-RAHMAN K.Minimum embedded length of cyclic horizontally loaded monopiles[J]. Journal of geotechnical and geoenvironmental engineering, 2012, 138(3): 357-363.
[6] 胡安峰, 南博文, 陈缘, 等. 基于砂土刚度衰减模型的修正p-y曲线法[J]. 上海交通大学学报, 2020, 54(12): 1316-1323.
HU A F, NAN B W, CHEN Y, et al.Modified p-y curves method based on degradation stiffness model of sand[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1316-1323.
[7] LENG J, YE G L, YE B, et al.Laboratory test and empirical model for shear modulus degradation of soft marine clays[J]. Ocean engineering, 2017, 146: 101-114.
[8] NORRIS G M.Theoretically based BEF laterally loaded piles analysis[C]//Proceeding of the 3rd International Conference on Numerical Methods in Offshore Piling. Paris, France, Technip, 1986: 361-386.
[9] ASHOUR M, NORRIS G, PILLING P.Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of geotechnical and geoenvironmental engineering, 1998, 124(4): 303-315.
[10] XU L Y, CAI F, WANG G X, et al.Nonlinear analysis of single laterally loaded piles in clays using modified strain wedge model[J]. International journal of civil engineering, 2017, 15(6): 895-906.
[11] 杨晓峰, 张陈蓉, 黄茂松, 等. 砂土中桩土侧向相互作用的应变楔模型修正[J]. 岩土力学, 2016, 37(10): 2877-2884, 2892.
YANG X F, ZHANG C R, HUANG M S, et al.Modification of strain wedge method for lateral soil-pile interaction in sand[J]. Rock and soil mechanics, 2016, 37(10): 2877-2884, 2892.
[12] HAJIALILUE-BONAB M, SOJOUDI Y, PUPPALA A J.Study of strain wedge parameters for laterally loaded piles[J]. International journal of geomechanics, 2013, 13(2): 143-152.
[13] ZHANG F, DAI G L, GONG W M, et al.Curved strain wedge analysis of laterally loaded flexible piles in various soil types[J]. Journal of geotechnical and geoenvironmental engineering, 2022, 148(6): 04022037.
[14] WANG L Z, LAI Y Q, HONG Y, et al.A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter(L/D) ratios[J]. Ocean engineering, 2020, 212: 107492.
[15] LAI Y Q, WANG L Z, ZHANG Y H, et al.Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves[J]. Ocean engineering, 2021, 220: 108437.
[16] DUNCAN J M, CHANG C Y.Nonlinear analysis of stress and strain in soils[J]. Journal of the soil mechanics and foundations division, 1970, 96(5): 1629-1653.
[17] EFTHYMIOU G, GAZETAS G.Elastic stiffnesses of a rigid suction caisson and its cylindrical sidewall shell[J]. Journal of geotechnical and geoenvironmental engineering, 2019, 145(2): 06018014.
[18] JOSTAD H P, ANDERSEN K H.Calculation of undrained holding capacity of suction anchors in clays[M]. Boca Raton: CRC Press, 2015: 263-268.
[19] 黄茂松, 李进军, 李兴照. 饱和软粘土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895.
HUANG M S, LI J J, LI X Z.Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese journal of geotechnical engineering, 2006, 28(7): 891-895.
[20] IDRISS I M, DOBRY R, SINGH R D.Nonlinear behavior of soft clays during cyclic loading[J]. Journal of the geotechnical engineering division, 1978, 104(12): 1427-1447.
[21] MURALI M, GRAJALES-SAAVEDRA F J, BEEMER R D, et al. Capacity of short piles and caissons in soft clay from geotechnical centrifuge tests[J]. Journal of geotechnical and geoenvironmental engineering, 2019, 145(10): 04019079.
[22] YANG Q J, GAO Y F, KONG D Q, et al.Centrifuge modelling of lateral loading behaviour of a “semi-rigid” mono-pile in soft clay[J]. Marine georesources & geotechnology, 2019, 37(10): 1205-1216.
基金
国家自然科学基金(52078128); 海岸灾害及防护教育部重点实验室(河海大学)开放基金(202303)