计及电-热-氢负荷与动态重构的主动配电网优化调度

王璐瑶, 刘卫亮, 刘长良, 刘帅, 王昕, 康佳垚

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 460-471.

PDF(1899 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1899 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 460-471. DOI: 10.19912/j.0254-0096.tynxb.2023-1451

计及电-热-氢负荷与动态重构的主动配电网优化调度

  • 王璐瑶1, 刘卫亮1,2, 刘长良1,2, 刘帅1,2, 王昕3, 康佳垚3
作者信息 +

OPTIMAL SCHEDULING OF ACTIVE DISTRIBUTION NETWORK TAKING INTO ACCOUNT ELECTRICITY-HEAT-HYDROGEN LOAD AND DYNAMIC RECONFIGURATION

  • Wang Luyao1, Liu Weiliang1,2, Liu Changliang1,2, Liu Shuai1,2, Wang Xin3, Kang Jiayao3
Author information +
文章历史 +

摘要

为提高主动配电网的综合运行品质,提出一种计及电-热-氢负荷与动态重构的主动配电网优化调度方法。首先,建立主动配电网系统数学模型,分析电动汽车、地板辐射供暖/供冷系统、氢储能系统的运行规律与可调潜力;其次,考虑电-热-氢负荷调节与网络重构,以各子系统出力与支路开关状态为决策变量,建立以降低运行成本、减小峰谷差、减少污染气体为目标的确定性优化调度模型;然后,采用信息间隙决策理论描述源荷不确定性,建立风险规避型调度模型,在保障一定期望目标的前提下使系统具有良好的鲁棒性;最后,基于IEEE-33节点系统分别对各调度方案进行对比分析,验证所提方法的有效性。

Abstract

How to improve the comprehensive operation quality of the active distribution network is an urgent problem to be solved. In this paper, an optimal scheduling method for active distribution network considering electricity-heat-hydrogen load and dynamic reconfiguration is proposed. Firstly, the mathematical model of the active distribution network system was established, and the operation rules and tunable potential of electric vehicles, floor radiant heating/cooling systems, and hydrogen energy storage systems were analyzed. Secondly, considering the electrical-thermal-hydrogen load regulation and network reconstruction, the output of each subsystem and the switching state of the branch are taken as the decision variables, and a deterministic optimization scheduling model with the goal of reducing the operating cost, reducing the peak-to-valley difference and reducing pollutant gas is established. Then, the information gap decision theory is used to describe the source-load uncertainty, and a risk-averse scheduling model is established, so that the system has good robustness under the premise of ensuring a certain desired goal. Finally, based on the IEEE-33 node system, the scheduling schemes are compared and analyzed, and the effectiveness of the proposed method is verified.

关键词

氢能 / 主动配电网 / 优化调度 / 信息间隙决策理论 / 动态重构 / 可调潜力

Key words

hydrogen energy / ADN / optimize scheduling / IGDT / dynamic reconfiguration / adjustable potential

引用本文

导出引用
王璐瑶, 刘卫亮, 刘长良, 刘帅, 王昕, 康佳垚. 计及电-热-氢负荷与动态重构的主动配电网优化调度[J]. 太阳能学报. 2025, 46(1): 460-471 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1451
Wang Luyao, Liu Weiliang, Liu Changliang, Liu Shuai, Wang Xin, Kang Jiayao. OPTIMAL SCHEDULING OF ACTIVE DISTRIBUTION NETWORK TAKING INTO ACCOUNT ELECTRICITY-HEAT-HYDROGEN LOAD AND DYNAMIC RECONFIGURATION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 460-471 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1451
中图分类号: TM73   

参考文献

[1] JIANG Y B, WAN C, BOTTERUD A, et al.Efficient robust scheduling of integrated electricity and heat systems: a direct constraint tightening approach[J]. IEEE transactions on smart grid, 2021, 12(4): 3016-3029.
[2] 朱自伟, 黄彪, 裘昕月, 等. 基于平抑风光出力波动的主动配电网优化调度[J]. 太阳能学报, 2022, 43(5): 90-97.
ZHU Z W, HUANG B, QIU X Y, et al.Optimal dispatching of active distribution network based on suppressing wind and photovoltaic power fluctuation[J]. Acta energiae solaris sinica, 2022, 43(5): 90-97.
[3] CHEN S J, LIU C C.From demand response to transactive energy: state of the art[J]. Journal of modern power systems and clean energy, 2017, 5(1): 10-19.
[4] 乔锐勋, 王军华, 韦道明, 等. 计及后备储能及空调调度潜力的5G基站多时间尺度优化方法[J]. 电力系统自动化, 2023, 47(4): 111-120.
QIAO R X, WANG J H, WEI D M, et al.Multi-time-scale optimization method for 5G base station considering backup energy storage and air-conditioning scheduling potential[J]. Automation of electric power systems, 2023, 47(4): 111-120.
[5] 余苏敏, 杜洋, 史一炜, 等. 考虑V2B智慧充电桩群的低碳楼宇优化调度[J]. 电力自动化设备, 2021, 41(9): 95-101.
YU S M, DU Y, SHI Y W, et al.Optimal scheduling of low-carbon building considering V2B smart charging pile groups[J]. Electric power automation equipment, 2021, 41(9): 95-101.
[6] KOOHI-FAYEGH S, ROSEN M A.A review of energy storage types, applications and recent developments[J]. Journal of energy storage, 2020, 27: 101047.
[7] 师瑞峰, 宁津, 高毓钦, 等. 含氢储能的公路交通风、光自洽微网系统优化调度策略研究[J]. 太阳能学报, 2023, 44(11): 513-521.
SHI R F, NING J, GAO Y Q, et al.Research on optimal dispatch strategy of wind and solar self-consistent microgrid in road transportation system with hydrogen energy storage[J]. Acta energiae solaris sinica, 2023, 44(11): 513-521.
[8] 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42(1): 170-179.
LIU J C, ZHOU C Y, GAO H J, et al.A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power system technology, 2018, 42(1): 170-179.
[9] NOJAVAN S, AKBARI-DIBAVAR A, FARAHMAND-ZAHED A, et al.Risk-constrained scheduling of a CHP-based microgrid including hydrogen energy storage using robust optimization approach[J]. International journal of hydrogen energy, 2020, 45(56): 32269-32284.
[10] 邓钰龙, 李春燕, 邵常政, 等. 电热气氢综合能源系统随机优化调度[J]. 太阳能学报, 2023, 44(11): 522-529.
DENG Y L, LI C Y, SHAO C Z, et al.Stochastic optimal scheduling of integrated electric-heat-gas-hydrogen energy system[J]. Acta energiae solaris sinica, 2023, 44(11): 522-529.
[11] KHORRAM-NIA R, BAHMANI-FIROUZI B, SIMAB M.Optimal scheduling of reconfigurable microgrids incorporating the PEVs and uncertainty effects[J]. IET renewable power generation, 2022, 16(16): 3531-3543.
[12] GAO H J, MA W, XIANG Y M, et al.Multi-objective dynamic reconfiguration for urban distribution network considering multi-level switching modes[J]. Journal of modern power systems and clean energy, 2022, 10(5): 1241-1255.
[13] 傅长熠, 杨镜非, 顾家辉. 基于双层动态时段划分的配电网重构[J]. 电力自动化设备, 2022, 42(6): 30-36, 52.
FU C Y, YANG J F, GU J H.Reconfiguration of distribution network based on bi-level dynamic time division[J]. Electric power automation equipment, 2022, 42(6): 30-36, 52.
[14] 刘尚奇, 胡健, 张晓杰, 等. 含光伏和储氢的电-氢集成化能源站容量配置[J]. 太阳能学报, 2023, 44(8): 171-179.
LIU S Q, HU J, ZHANG X J, et al.Capacity configuration of integrated electricity charging and hydrogen refueling station containing photovoltaic and hydrogen storage[J]. Acta energiae solaris sinica, 2023, 44(8): 171-179.
[15] 李东东, 王啸林, 沈运帷, 等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备, 2023, 43(5): 210-217, 251.
LI D D, WANG X L, SHEN Y W, et al.Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric power automation equipment, 2023, 43(5): 210-217, 251.
[16] CAO X Y, WANG J X, ZENG B.A chance constrained information-gap decision model for multi-period microgrid planning[J]. IEEE transactions on power systems, 2018, 33(3): 2684-2695.
[17] 汪超群, 韦化, 吴思缘. 基于信息间隙决策理论的多源联合优化机组组合[J]. 中国电机工程学报, 2018, 38(12): 3431-3440, 3442.
WANG C Q, WEI H, WU S Y.Multi-power combined unit commitment based on information gap decision theory[J]. Proceedings of the CSEE, 2018, 38(12): 3431-3440, 3442.
[18] 呙金瑞, 张智俊, 窦春霞. 基于信息间隙决策理论与动态分时电价的电动汽车接入虚拟电厂双层经济调度策略[J]. 电力自动化设备, 2022, 42(10): 77-85.
GUO J R, ZHANG Z J, DOU C X.Bi-level economic dispatch strategy for electric vehicles connecting to virtual power plant based on information gap decision theory and dynamic time-of-use price[J]. Electric power automation equipment, 2022, 42(10): 77-85.
[19] WEI J D, ZHANG Y, WANG J X, et al.Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method[J]. Applied energy, 2020, 260: 114188.
[20] 张卫国, 徐青山, 陈堃, 等. 考虑电价敏感用户行为的电动汽车虚拟电厂外特性[J]. 高电压技术, 2023, 49(4): 1372-1379.
ZHANG W G, XU Q S, CHEN K, et al.External characteristics of electric vehicle virtual power plant considering electricity price-sensitive user behavior[J]. High voltage engineering, 2023, 49(4): 1372-1379.
[21] 周珊珊, 林永君. 考虑充电行为的电动汽车充电负荷时空分布预测[J]. 工业技术创新, 2022, 9(3): 120-126.
ZHOU S S, LIN Y J.Prediction of temporal and spatial distribution of electric vehicle charging load considering charging behavior[J]. Industrial technology innovation, 2022, 9(3): 120-126.
[22] 艾欣, 李一铮, 王坤宇, 等. 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容[J]. 电力自动化设备, 2018, 38(9): 9-14.
AI X, LI Y Z, WANG K Y, et al.Locating and sizing of electric vehicle charging station based on chaotic simulated annealing particle swarm optimization algorithm[J]. Electric power automation equipment, 2018, 38(9): 9-14.
[23] ZHAO K, LIU X H, JIANG Y.Dynamic performance of water-based radiant floors during start-up and high-intensity solar radiation[J]. Solar energy, 2014, 101: 232-244.
[24] 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99.
XU C B, LIU J G.Hydrogen energy storage in China's new-type power system: application value, challenges, and prospects[J]. Strategic study of CAE, 2022, 24(3): 89-99.
[25] 于雪菲, 张帅, 刘琳琳, 等. 基于信息间隙决策理论的碳捕集电厂调度[J]. 清华大学学报(自然科学版), 2022, 62(9): 1467-1473.
YU X F, ZHANG S, LIU L L, et al.Carbon capture power plant scheduling based on information gap decision theory[J]. Journal of Tsinghua University(science and technology), 2022, 62(9): 1467-1473.
[26] HE N, QIAN C, SHEN C, et al.A fusion framework for lithium-ion batteries state of health estimation using compressed sensing and entropy weight method[J]. ISA transactions, 2023, 135: 585-604.
[27] 秦绍基, 林靖淳, 张勇军, 等. 基于熵权自适应信息间隙决策的园区综合能源系统规划[J]. 电网技术, 2023, 47(10): 4190-4203.
QIN S J, LIN J C, ZHANG Y J, et al.Comprehensive energy system planning of park based on entropy weight adaptive information gap decision[J]. Power system technology, 2023, 47(10): 4190-4203.
[28] 岑有奎, 任建文, 张豪林. 基于氢储能的含大规模风电电力系统经济调度[J]. 科学技术与工程, 2022, 22(20): 8727-8733.
CEN Y K, REN J W, ZHANG H L.Economic dispatch of power system containing large-scale wind power based on hydrogen energy storage[J]. Science technology and engineering, 2022, 22(20): 8727-8733.
[29] 吴庆泽, 吕丽霞, 刘长良, 等. 多模式风光火储系统多目标优化调度[J]. 华北电力大学学报(自然科学版), 2024, 51(5): 100-107, 117.
WU Q Z, LYU L X, LIU C L, et al.Multi-objective optimal scheduling of multi-mode wind-solar-thermal power storage system[J]. Journal of North China Electric Power University(natural science edition), 2024, 51(5): 100-107, 117.
[30] 邹象, 张浩, 雷蕾, 等. 基于层次分析法的核动力厂安全相关经验反馈信息重要性评价方法研究与应用[J]. 核动力工程, 2023, 44(3): 189-195.
ZOU X, ZHANG H, LEI L, et al.Research and application of significance determination for safety-related feedback information based on analytic hierarchy process in nuclear power plants[J]. Nuclear power engineering, 2023, 44(3): 189-195.
[31] 刘帅, 吴胜洋, 刘卫亮, 等. 计及不确定性的风光抽蓄发电系统容量优化[J]. 水力发电学报, 2024, 43(3): 43-56.
LIU S, WU S Y, LIU W L, et al.Capacity optimization of wind-solar pumped storage power generation system considering uncertainties[J]. Journal of hydroelectric engineering, 2024, 43(3): 43-56.
[32] 岳文全, 姚方, 文福拴. 考虑光热电站的电热氢综合能源系统协调优化策略[J]. 分布式能源, 2023, 8(4): 29-39.
YUE W Q, YAO F, WEN F S.Coordinated optimization strategy for electric-heat-hydrogen integrated energy system considering concentrating solar power[J]. Distributed energy, 2023, 8(4): 29-39.

基金

国家能源集团科技项目(GJNY-21-98); 中央高校基本科研业务费(2023JG005; 2023JC010)

PDF(1899 KB)

Accesses

Citation

Detail

段落导航
相关文章

/