基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法

潘美琪, 贺兴

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 192-200.

PDF(1841 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1841 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 192-200. DOI: 10.19912/j.0254-0096.tynxb.2023-1452

基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法

  • 潘美琪1, 贺兴2
作者信息 +

FAULT DIAGNOSIS METHOD FOR WIND TURBINE PITCH SYSTEM BASED ON TimeGAN-Stacking

  • Pan Meiqi1, He Xing2
Author information +
文章历史 +

摘要

风电机组变桨系统的少量不均衡故障样本难以训练基于数据驱动的故障诊断模型,导致监测系统常常漏报或误报故障。针对上述问题,提出一种基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法。在数据层面,由于原始样本类别不平衡,基于时序生成对抗网络(TimeGAN)跟踪风电机组运行数据逐步概率分布的动态变化特征,同时优化生成样本的全局分布与局部分布,有效平衡且扩容风电机组多种故障综合样本集;在模型层面,建立Stacking集成模型,融合多个故障诊断器的优势,进一步提高故障诊断能力。最后,基于实际风场数据对所提方法进行测试,结果表明,所提出的TimeGAN-Stacking故障识别方法可有效诊断4种变桨故障。

Abstract

The small number of unbalanced fault samples in the variable pitch system of wind turbines makes it difficult to train data-driven fault diagnosis models, leading to frequent missed or false alarms in monitoring systems.. In response to the above issues, this article proposes a fault diagnosis method for wind turbine pitch system based on TimeGAN-Stacking. At the data level, due to the imbalance of the original sample categories, the dynamic change characteristics of the gradual probability distribution of the fan operation data are tracked based on the time-series Generative adversarial network (TimeGAN), and the global and local distribution of the generated samples are optimized to effectively balance and expand the comprehensive sample set of multiple faults of the fan; At the model level, establish a Stacking integrated model to integrate the advantages of multiple fault diagnosis devices and further improve fault diagnosis capabilities. Finally, the proposed method was tested based on actual wind field data, and the results showed that the proposed TimeGAN -Stacking fault identification method can effectively diagnose four types of pitch faults.

关键词

风电机组 / 数据挖掘 / 故障分析 / 深度学习 / 时序生成对抗网络 / 样本增强

Key words

wind turbines / data mining / fault analysis / deep learning / time-series generative adversarial network(TimeGAN) / sample enhancement

引用本文

导出引用
潘美琪, 贺兴. 基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法[J]. 太阳能学报. 2025, 46(1): 192-200 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1452
Pan Meiqi, He Xing. FAULT DIAGNOSIS METHOD FOR WIND TURBINE PITCH SYSTEM BASED ON TimeGAN-Stacking[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 192-200 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1452
中图分类号: TM614   

参考文献

[1] 王思华, 王恬, 周丽君, 等. 基于批标准化的堆叠自编码网络风电机组变桨系统故障诊断[J]. 太阳能学报, 2022, 43(2): 394-401.
WANG S H, WANG T, ZHOU L J, et al.Fault diagnosis of pitch system of wind turbine based on standardized stacked autoencoder network[J]. Acta energiae solaris sinica, 2022, 43(2): 394-401.
[2] 苏向敬, 山衍浩, 周汶鑫, 等. 基于GRU和注意力机制的海上风机齿轮箱状态监测[J]. 电力系统保护与控制, 2021, 49(24): 141-149.
SU X J, SHAN Y H, ZHOU W X, et al.GRU and attention mechanism-based condition monitoring of an offshore wind turbine gearbox[J]. Power system protection and control, 2021, 49(24): 141-149.
[3] 宋威, 林建维, 周方泽, 等. 基于改进降噪自编码器的风机轴承故障诊断方法[J]. 电力系统保护与控制, 2022, 50(10): 61-68.
SONG W, LIN J W, ZHOU F Z, et al.Wind turbine bearing fault diagnosis method based on an improved denoising AutoEncoder[J]. Power system protection and control, 2022, 50(10): 61-68.
[4] 郭慧东, 王玮, 夏明超. 基于数据挖掘的风电机组变桨系统劣化状态在线辨识方法[J]. 中国电机工程学报, 2016, 36(9): 2389-2397.
GUO H D, WANG W, XIA M C.On-line identification for wind turbine pitch system degradation based on data mining technology[J]. Proceedings of the CSEE, 2016, 36(9): 2389-2397.
[5] 王爽心, 郭婷婷, 李蒙. 风电机组变工况变桨系统异常状态在线识别[J]. 中国电机工程学报, 2019, 39(17): 5144-5152, 5295.
WANG S X, GUO T T, LI M.On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J]. Proceedings of the CSEE, 2019, 39(17): 5144-5152, 5295.
[6] 杨建, 王力, 宋冬然, 等. 基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法[J]. 中国电机工程学报, 2021, 41(18): 6198-6212.
YANG J, WANG L, SONG D R, et al.Diagnostic method of zero-point shifting of wind turbine yaw angle based on isolated forest and sparse Gaussian process regression[J]. Proceedings of the CSEE, 2021, 41(18): 6198-6212.
[7] 邓子豪, 李录平, 刘瑞, 等. 基于SCADA数据特征提取的风电机组偏航齿轮箱故障诊断方法研究[J]. 动力工程学报, 2021, 41(1): 43-50.
DENG Z H, LI L P, LIU R, et al.Research on diagnosis method of wind turbine yaw gearbox based on SCADA data feature extraction[J]. Journal of Chinese Society of Power Engineering, 2021, 41(1): 43-50.
[8] 孟良, 苏元浩, 许同乐, 等. 并行卷积神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2023, 44(5): 449-456.
MENG L, SU Y H, XU T L, et al.Wind turbine fault diagnosis method based on parallel convolutional neural network[J]. Acta energiae solaris sinica, 2023, 44(5): 449-456.
[9] 江国乾, 周俊超, 武鑫, 等. 基于空洞因果卷积网络的风电机组异常检测[J]. 太阳能学报, 2023, 44(5): 368-375.
JIANG G Q, ZHOU J C, WU X, et al.Wind turbine anomaly detection based on dilated causal convolution network[J]. Acta energiae solaris sinica, 2023, 44(5): 368-375.
[10] 刘家瑞, 杨国田, 杨锡运. 基于深度卷积自编码器的风电机组故障预警方法研究[J]. 太阳能学报, 2022, 43(11): 215-223.
LIU J R, YANG G T, YANG X Y.Research on wind turbine fault warning method based on deep convolution auto-encoder[J]. Acta energiae solaris sinica, 2022, 43(11): 215-223.
[11] 李轩, 梅飞, 沙浩源, 等. 考虑样本不平衡的特高压换流阀状态评估及其影响因素分析[J]. 中国电机工程学报, 2022, 42(4): 1558-1569.
LI X, MEI F, SHA H Y, et al.State evaluation of UHVDC converter valve considering sample imbalance and its influencing factors analysis[J]. Proceedings of the CSEE, 2022, 42(4): 1558-1569.
[12] 葛磊蛟, 廖文龙, 王煜森, 等. 数据不足条件下基于改进自动编码器的变压器故障数据增强方法[J]. 电工技术学报, 2021, 36(S1): 84-94.
GE L J, LIAO W L, WANG Y S, et al.Data augmentation method for transformer fault based on improved Auto-Encoder under the condition of insufficient data[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 84-94.
[13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014.
[14] 曾爽, 丁屹峰, 李香龙, 等. 基于条件时序生成对抗网络的楼宇空调负荷场景生成方法[J]. 电网技术, 2022, 46(7): 2448-2456.
ZENG S, DING Y F, LI X L, et al.Scenario generation of air conditioning loads in buildings based on conditional TimeGAN[J]. Power system technology, 2022, 46(7): 2448-2456.
[15] YOON J, JARRETT D, VAN DER SCHAAR M. Time-series generative adversarial networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada, 2019.
[16] 刘雅婷, 杨明, 于一潇, 等. 基于多场景敏感气象因子优选及小样本学习与扩充的转折性天气日前风电功率预测[J]. 高电压技术, 2023, 49(7): 2972-2982.
LIU Y T, YANG M, YU Y X, et al.Transitional-weather-considered day-ahead wind power forecasting based on multi-scene sensitive meteorological factor optimization and few-shot learning[J]. High voltage engineering, 2023, 49(7): 2972-2982.
[17] 樊帅, 唐群先. 基于AdaBoost-SAMME的风力发电机组变桨异常识别系统[J]. 电力系统保护与控制, 2020, 48(21): 31-40.
FAN S, TANG Q X.Wind turbine pitch anomaly recognition system based on AdaBoost-SAMME[J]. Power system protection and control, 2020, 48(21): 31-40.
[18] 游文霞, 李清清, 杨楠, 等. 基于多异学习器融合Stacking集成学习的窃电检测[J]. 电力系统自动化, 2022, 46(24): 178-186.
YOU W X, LI Q Q, YANG N, et al.Electricity theft detection based on multiple different learner fusion by stacking ensemble learning[J]. Automation of electric power systems, 2022, 46(24): 178-186.
[19] 张国治, 陈康, 方荣行, 等. 基于DGA与鲸鱼算法优化Logit Boost-决策树的变压器故障诊断方法[J]. 电力系统保护与控制, 2023, 51(7): 63-72.
ZHANG G Z, CHEN K, FANG R X, et al.Transformer fault diagnosis based on DGA and a whale algorithm optimizing a LogitBoost-decision tree[J]. Power system protection and control, 2023, 51(7): 63-72.
[20] 邢超, 高敬业, 毕贵红, 等. 基于多层感知器的LCC-MMC并联型特高压三端混合直流输电线路故障检测方法探讨[J]. 电力自动化设备, 2023, 43(3): 138-145.
XING C, GAO J Y, BI G H, et al.Discussion on fault detection method for transmission line of LCC-MMC parallel three-terminal hybrid UHVDC system based on multi-layer perception[J]. Electric power automation equipment, 2023, 43(3): 138-145.
[21] 赵冬梅, 谢家康, 王闯, 等. 基于Bagging集成学习的电力系统暂态稳定在线评估[J]. 电力系统保护与控制, 2022, 50(8): 1-10.
ZHAO D M, XIE J K, WANG C, et al.On-line transient stability assessment of a power system based on Bagging ensemble learning[J]. Power system protection and control, 2022, 50(8): 1-10.
[22] 辛峰, 尤向阳, 葛笑寒, 等. 基于空间相量模型的三相电压暂降扰动特征提取与分类[J]. 电力系统保护与控制, 2022, 50(8): 58-65.
XIN F, YOU X Y, GE X H, et al.Feature extraction and classification of three-phase voltage dips based on a space phasor model[J]. Power system protection and control, 2022, 50(8): 58-65.
[23] 崔芮华, 李泽, 佟德栓. 基于相空间重构和PCA的航空电弧故障检测[J]. 中国电机工程学报, 2021, 41(14): 5054-5065.
CUI R H, LI Z, TONG D S.Arc fault detection based on phase space reconstruction and principal component analysis in aviation power system[J]. Proceedings of the CSEE, 2021, 41(14): 5054-5065.
[24] 史强, 刘鹍, 李金嵩, 等. 基于t-SNE与CFSFDP算法的多源局部放电脉冲分类技术[J]. 中国电力, 2022, 55(5): 102-110.
SHI Q, LIU K, LI J S, et al.Multi-source partial discharge pulse classification technology based on t-SNE and CFSFDP algorithms[J]. Electric power, 2022, 55(5): 102-110.
[25] 张玉彦, 张永奇, 孙春亚, 等. 不平衡样本下基于生成式对抗网络的风机叶片开裂状态识别[J]. 计算机集成制造系统, 2023, 29(2): 532-543.
ZHANG Y Y, ZHANG Y Q, SUN C Y, et al.Identification method of cracking state of wind turbine blade based on GAN under imbalanced samples[J]. Computer integrated manufacturing systems, 2023, 29(2): 532-543.
[26] 刘云鹏, 许自强, 和家慧, 等. 基于条件式Wasserstein生成对抗网络的电力变压器故障样本增强技术[J]. 电网技术, 2020, 44(4): 1505-1513.
LIU Y P, XU Z Q, HE J H, et al.Data augmentation method for power transformer fault diagnosis based on conditional Wasserstein generative adversarial network[J]. Power system technology, 2020, 44(4): 1505-1513.
[27] 张天翼, 丁立新. 一种基于SMOTE的不平衡数据集重采样方法[J]. 计算机应用与软件, 2021, 38(9): 273-279.
ZHANG T Y, DING L X.A new resampling method based on SMOTE for imbalanced data set[J]. Computer applications and software, 2021, 38(9): 273-279

基金

国家自然科学基金(52277111); 上海市科学技术委员会(21DZ1208300)

PDF(1841 KB)

Accesses

Citation

Detail

段落导航
相关文章

/