基础运动的储能飞轮转子动力学特性分析

张昊随, 宋顺一, 滕伟, 武鑫, 柳亦兵

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 261-268.

PDF(2591 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2591 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 261-268. DOI: 10.19912/j.0254-0096.tynxb.2023-1453

基础运动的储能飞轮转子动力学特性分析

  • 张昊随1,2, 宋顺一3, 滕伟1,2, 武鑫1,2, 柳亦兵1,2
作者信息 +

ANALYSIS OF DYNAMIC CHARACTERISTICS OF ENERGY STORAGE FLYWHEEL ROTOR WITH FOUNDATION MOTION

  • Zhang Haosui1,2, Song Shunyi3, Teng Wei1,2, Wu Xin1,2, Liu Yibing1,2
Author information +
文章历史 +

摘要

针对基础运动的飞轮储能转子动力学问题展开研究,将飞轮转子等效为Timoshenko梁单元模型,通过坐标变换建立基础运动的转子动力学有限元模型,研究基础在规则运动时的动力学特性,得到以下结论:基础运动参数的增大会加剧固有频率分离并改变临界转速。转子稳态响应频谱中会出现基础运动的频率成分,幅值随基础运动频率、幅值的增大而增大;基础转动频率接近临界转速对应的频率时会产生共振,稳态频谱中基础运动频率成分出现峰值,瞬态升速响应出现额外共振峰。转子设计和应用时应考虑基础运动的影响。

Abstract

When the flywheel energy storage system runs in complex environment, the foundation will be affected by the environment to produce a complex motion state, which will bring additional excitation and affect the rotor motion state. In this paper, the dynamic problem of flywheel energy storage rotor with foundation motion is studied. First, the flywheel rotor is equivalent to Timoshenko beam element model, and the finite element dynamic model with foundation motion is established by coordinate transformation. The dynamic characteristics of the rotor with foundation in regular motion are studied. The following conclusions are drawn: the increase of the foundation motion parameters will enlarge the natural frequency separation and change the critical speeds. The frequency component of the foundation motion appears in the steady-state response spectrum of the rotor, and the amplitude increases with the increase of the frequency and amplitude of the foundation motion. When the frequency of the foundation motion is close to the frequency corresponding to the critical speed, the resonance will be caused, the peak of the foundation motion frequency component will appear in the steady state spectrum, and additional formant will appear in the transient acceleration response. The influence of foundation motion should be considered in rotor design and application.

关键词

储能 / 飞轮 / 基础 / 共振 / 动力学响应 / 梁单元 / 固有频率

Key words

flywheels / energy storage / foundations / resonance / dynamic response / beam element / natural frequencies

引用本文

导出引用
张昊随, 宋顺一, 滕伟, 武鑫, 柳亦兵. 基础运动的储能飞轮转子动力学特性分析[J]. 太阳能学报. 2025, 46(1): 261-268 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1453
Zhang Haosui, Song Shunyi, Teng Wei, Wu Xin, Liu Yibing. ANALYSIS OF DYNAMIC CHARACTERISTICS OF ENERGY STORAGE FLYWHEEL ROTOR WITH FOUNDATION MOTION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 261-268 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1453
中图分类号: TH113   

参考文献

[1] 武鑫, 李洋涛, 马志勇, 等. 基于改进小波包分解的混合储能系统容量配置方法[J]. 太阳能学报, 2023, 44(8): 23-29.
WU X, LI Y T, MA Z Y, et al.Capacity configuration method of hybrid energy storage system based on improved wavelet packet decomposition[J]. Acta energiae solaris sinica, 2023, 44(8): 23-29.
[2] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[3] 武鑫, 陈玉龙, 柳亦兵. 并网型飞轮储能系统金属转子结构优化设计[J]. 太阳能学报, 2021, 42(2): 317-321.
WU X, CHEN Y L, LIU Y B.Structure optimization of metal rotor of grid-connected flywheel energy storage system[J]. Acta energiae solaris sinica, 2021, 42(2): 317-321.
[4] 徐敬岗, 邓景珊, 李峰. 基础激励下转子-轴承-支座系统动力学特性研究[J]. 噪声与振动控制, 2022, 42(5): 66-73.
XU J G, DENG J S, LI F.Study on dynamic characteristics of rotor-bearing-support systems under foundation excitation[J]. Noise and vibration control, 2022, 42(5): 66-73.
[5] 张恩杰, 焦映厚, 陈照波, 等. 基础振动作用下转子-轴承-密封系统动力学分析[J]. 振动工程学报, 2021, 34(6): 1169-1176.
ZHANG E J, JIAO Y H, CHEN Z B, et al.Dynamic analysis of rotor-bearing-seal system excited by base vibration[J]. Journal of vibration engineering, 2021, 34(6): 1169-1176.
[6] YING G C, MENG G, JING J P.Turbocharger rotor dynamics with foundation excitation[J]. Archive of applied mechanics, 2009, 79(4): 287-299.
[7] HAJŽMAN M, BALDA M, POLCAR P, et al. Turbine rotor dynamics models considering foundation and stator effects[J]. Machines, 2022, 10(2): 77.
[8] JUNG D, DESMIDT H.Non-linear behaviors of off-centered Planar eccentric rotor/autobalancer system mounted on asymmetric and rotational flexible foundation[J]. Journal of sound and vibration, 2018, 429: 265-286.
[9] HOU L, CHEN Y S, FU Y Q, et al.Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load[J]. International journal of non-linear mechanics, 2016, 78: 133-141.
[10] HOU L, CHEN H Z, CHEN Y S, et al.Bifurcation and stability analysis of a nonlinear rotor system subjected to constant excitation and rub-impact[J]. Mechanical systems and signal processing, 2019, 125: 65-78.
[11] 史阳旭, 李明, 杜晓蕾. 艏摇运动下船用转子系统的非线性动力学特性[J]. 振动·测试与诊断, 2022, 42(6): 1189-1197, 1248.
SHI Y X, LI M, DU X L.Nonlinear dynamics of marine rotor-bearing system under yawing motion[J]. Journal of vibration, measurement & diagnosis, 2022, 42(6): 1189-1197, 1248.
[12] 谢旋, 李明, 王军伟, 等. 横摇作用下气囊-浮筏耦合船用转子系统的非线性动力学特性[J]. 船舶力学, 2022, 26(8): 1207-1217.
XIE X, LI M, WANG J W, et al.Nonlinear dynamic behavior of marine rotor system coupled with air bag-floating raft under ship rolling motion[J]. Journal of ship mechanics, 2022, 26(8): 1207-1217.
[13] 任正义, 黄同, 杨立平. 刚性飞轮转子-基础耦合系统的径向振动分析[J]. 机械设计与制造, 2021(3): 27-32, 38.
REN Z Y, HUANG T, YANG L P.Radial vibration analysis of rigid flywheel rotor-foundation coupling system[J]. Machinery design & manufacture, 2021(3): 27-32, 38.
[14] 杨红进, 谢振宇, 赵静. 基础影响下车载飞轮电池动态性能的联合仿真分析[J]. 系统仿真技术, 2014, 10(2): 130-139.
YANG H J, XIE Z Y, ZHAO J.Co-simulation analysis of dynamic characteristics of flywheel battery for vehicle[J]. System simulation technology, 2014, 10(2): 130-139.
[15] 周传迪, 柳亦兵, 朱万程, 等. 基于有限单元和模型降阶的储能飞轮转子动力学建模及分析[J]. 动力工程学报, 2022, 42(2): 182-189.
ZHOU C D, LIU Y B, ZHU W C, et al.Dynamic modeling and analysis of energy storage flywheel rotor based on finite element and model reduction[J]. Journal of Chinese Society of Power Engineering, 2022, 42(2): 182-189.
[16] VELTRI J A, MACNEIL C J. High-voltage flywheel energy storage system: US20150200578 [P].2015-07-16.
[17] CHEN X, GAN X H, REN G M.Dynamic modeling and nonlinear analysis of a rotor system supported by squeeze film damper with variable static eccentricity under aircraft turning maneuver[J]. Journal of sound vibration, 2020, 485: 115551.
[18] FRISWELL M I, PENNY J E T, GARVEY S D, et al. Dynamics of rotating machines[M]. Cambridge, UK: Cambridge University Press, 2010.

基金

电力系统用大容量飞轮储能成套系统研究项目(0309-NJKG-技开-2023-0032)

PDF(2591 KB)

Accesses

Citation

Detail

段落导航
相关文章

/