浮式风力机纵荡过程气动稳定性分析

周乐, 马璐, 秦明, 张险峰, 沈昕, 杜朝辉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 60-70.

PDF(1816 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1816 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 60-70. DOI: 10.19912/j.0254-0096.tynxb.2023-1467

浮式风力机纵荡过程气动稳定性分析

  • 周乐1, 马璐2, 秦明2, 张险峰2, 沈昕1,3, 杜朝辉1,3
作者信息 +

AERODYNAMIC STABILITY ANALYSIS OF FLOATING OFFSHORE WIND TURBINES UNDER SURGE CONDITION

  • Zhou Le1, Ma Lu2, Qin Ming2, Zhang Xianfeng2, Shen Xin1,3, Du Zhaohui1,3
Author information +
文章历史 +

摘要

气动稳定性对于浮式风力机的运行安全具有重要影响,该文采用升力线自由尾迹模型,通过气动功对浮式风力机纵荡过程中翼型及风轮的气动稳定性进行分析。结果表明,浮台的纵荡运动会造成翼型及风轮所受气动力的周期性波动,由此导致的气动阻尼会对风力机的气动稳定性产生影响。此外,来流风速也会对风力机的气动阻尼产生影响,当风速较大时叶片中段的翼型会进入深度失速状态,使翼型在一个纵荡周期内的气动功为负。在较宽的纵荡工况和来流风速范围内风轮均受到正气动阻尼作用,但随着纵荡频率和幅值的增加,风轮的气动阻比尼降低;当纵荡工况较为剧烈时,风力机会进入螺旋桨状态,其所受推力的方向会发生改变,增加风轮的气动功;此外在开启控制后,系统的变转速及变桨控制会改变叶片及风轮载荷的绝对值及波动幅值,从而影响风力机的气动功。

Abstract

Aerodynamic stability has significant effect on the safety of the floating offshore wind turbine's operation. In the present study, the lifting-line free vortex wake model is adopted to analyze the aerodynamic stability of the airfoil and the rotor under surge condition through the aerodynamic work. The results show that the loads of the airfoil and the rotor will fluctuate periodically due to the surge motion of the floating platform, and the resulting aerodynamic damping will affect the aerodynamic stability of the wind turbine. In addition, the inflow wind velocity will also affect the aerodynamic damping of the wind turbine. When the wind velocity is large enough, the airfoils of the middle part of the blade will enter the deep stall state, so that the aerodynamic work of the airfoil during a surge period is negative. The rotor is affected by positive aerodynamic damping in a wide range of surge conditions and inflow wind velocities, and the aerodynamic damping ratio of the rotor decreases with the increase of the surge frequency and amplitude. When the surge condition is relatively severe, the rotor will enter the propeller state and the thrust direction will change, thus increasing the aerodynamic work of the rotor. In addition, after the servo control is turned on, the variable-speed and variable-pitch control of the system will change the absolute value and fluctuation amplitude of the loads, thus affecting the aerodynamic work of the wind turbine.

关键词

浮式风力机 / 气动稳定性 / 阻尼 / 纵荡 / 气动功

Key words

offshore wind turbines / aerodynamic stability / damping / surge motion / aerodynamic work

引用本文

导出引用
周乐, 马璐, 秦明, 张险峰, 沈昕, 杜朝辉. 浮式风力机纵荡过程气动稳定性分析[J]. 太阳能学报. 2025, 46(1): 60-70 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1467
Zhou Le, Ma Lu, Qin Ming, Zhang Xianfeng, Shen Xin, Du Zhaohui. AERODYNAMIC STABILITY ANALYSIS OF FLOATING OFFSHORE WIND TURBINES UNDER SURGE CONDITION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 60-70 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1467
中图分类号: TK89   

参考文献

[1] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
WEN B R, TIAN X L, LI Z W, et al.Coupling dynamics of floating wind turbines: history, progress and challenges[J]. Advances in mechanics, 2022, 52(4): 731-808.
[2] KARIMIRAD M, MOAN T.Effect of aerodynamic and hydrodynamic damping on dynamic response of a spar type floating wind turbine[C]//Proceedings of the European Wind Energy Conference and Exhibition. warsaw, Poland, 2010.
[3] MENG Q S, HUA X G, CHEN C, et al.Analytical study on the aerodynamic and hydrodynamic damping of the platform in an operating spar-type floating offshore wind turbine[J]. Renewable energy, 2022, 198: 772-788.
[4] 杨阳, 李春, 张万福, 等. 气动阻尼及地震强度对风力机动力学特性影响研究[J]. 工程热物理学报, 2017, 38(12): 2588-2594.
YANG Y, LI C, ZHANG W F, et al.Research on the impact of aerodynamic damping and earthquake intensity for the dynamic behavior of wind turbine[J]. Journal of engineering thermophysics, 2017, 38(12): 2588-2594.
[5] 池志强, 夏鸿建, 李德源, 等. 风力机柔性叶片模态气动阻尼分析方法研究[J]. 机械工程学报, 2018, 54(2): 176-183.
CHI Z Q, XIA H J, LI D Y, et al.Study on modal aerodynamic damping analysis method for wind turbine blade[J]. Journal of mechanical engineering, 2018, 54(2): 176-183.
[6] 郭洪澈, 李钢强, 刘雄, 等. 气动阻尼对海上风力机筒形塔架的影响[J]. 太阳能学报, 2013, 34(8): 1450-1457.
GUO H C, LI G Q, LIU X, et al.Influence of aerodynamic damping on tubular tower of offshore horizontal axis wind turbines[J]. Acta energiae solaris sinica, 2013, 34(8): 1450-1457.
[7] 姜军倪, 董霄峰, 王海军, 等. 海上风电结构横风向气动力阻尼特性研究[J]. 太阳能学报, 2022, 43(9): 267-272.
JIANG J N, DONG X F, WANG H J, et al.Research on cross-wind aerodynamic damping characteristics of offshore wind turbine structure[J]. Acta energiae solaris sinica, 2022, 43(9): 267-272.
[8] 邓露, 黄民希, 肖志颖, 等. 考虑气动阻尼的浮式风机频域响应分析[J]. 湖南大学学报(自然科学版), 2017, 44(1): 1-8.
DENG L, HUANG M X, XIAO Z Y, et al.Analysis on frequency response of floating wind turbine considering the influence of aerodynamic damping[J]. Journal of Hunan University (natural sciences), 2017, 44(1): 1-8.
[9] 陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 1255-1265.
CHEN J H, HU Z Q.Study on aerodynamic damping of semi-submersible floating wind turbines[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(4): 1255-1265.
[10] YANG C, CHEN P, CHENG Z S, et al.Aerodynamic damping of a semi-submersible floating wind turbine: an analytical, numerical and experimental study[J]. Ocean engineering, 2023, 281: 114826.
[11] DENG Y F, ZHANG S Y, ZHANG M M, et al.Frequency-dependent aerodynamic damping and its effects on dynamic responses of floating offshore wind turbines[J]. Ocean engineering, 2023, 278: 114444.
[12] CHEN J H, HU Z Q.Experimental investigation of aerodynamic effect-induced dynamic characteristics of an OC4 semi-submersible floating wind turbine[J]. Proceedings of the institution of mechanical engineers, part M: journal of engineering for the maritime environment, 2018, 232(1): 19-36.
[13] 陈孛. 大型风力机气动阻尼识别与叶片抑颤研究[D]. 长沙: 湖南大学, 2018.
CHEN B.Study on aerodynamic damping identification and blade flutter suppression of large wind turbine[D]. Changsha: Hunan University, 2018.
[14] HANSEN M O L. Aerodynamics of wind turbines[M]. 2nd ed. London: Earthscan, 2008.
[15] WAYMAN E N.Coupled dynamics and economic analysis of floating wind turbine systems[D]. Cambridge: Massachusetts Institute of Technology, 2006.
[16] LEISHMAN J G, BEDDOES T S.A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3): 3-17.
[17] MANCINI S, BOORSMA K, CABONI M, et al.Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion[J]. Wind energy science, 2020, 5(4): 1713-1730.

基金

中国长江三峡集团(202303058); Ⅳ类高峰能源科学与技术学科资助项目

PDF(1816 KB)

Accesses

Citation

Detail

段落导航
相关文章

/