为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。
Abstract
In this article, an improved Coati Optimization Algorithm is proposed to optimize the diagnosis method of Extreme Learning Machine to achieve accurate classification of PV array failures. Firstly, the output characteristics of PV panels failing in the array are analyzed and appropriate fault characteristics are selected. Secondly, Coati Optimization Algorithm is utilized to solve the optimal initial weights and thresholds by exploiting the stochasticity of the initial weights and thresholds of Extreme Learning Machine for PV array fault classification. Furthermore, both the randomness of the initial parameters and the limitation of global search ability of Coati Optimization Algorithm are optimized by circle chaotic mapping, levy flight and dynamic refractive inverse learning, which greatly reduces the training time and improves the optimization search accuracy of the algorithm. Finally, the classification performance of the failure diagnostic model will be validated using experimental failure data of PV array, the corresponding results indicate that the diagnostic model improves the fault classification accuracy to 100% and 98.33% for the training set and test set, respectively, which is superior to the traditional extreme learning machine, BP neural network, support vector machine and convolutional neural networks.
关键词
光伏组件 /
故障分析 /
特征选择 /
监督学习 /
极限学习机 /
改进长鼻浣熊优化算法
Key words
PV panels /
failure analysis /
feature selection /
supervised learning /
extreme learning machine /
improved coati optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 乔苏朋, 杨艳, 陈世群, 等. 光伏阵列故障检测方法综述[J]. 电气技术, 2021, 22(7): 1-6.
QIAO S P, YANG Y, CHEN S Q, et al.Review on photovoltaic array diagnosis methods[J]. Electrical engineering, 2021, 22(7): 1-6.
[2] 张希康, 李泽滔. 光伏阵列故障诊断算法研究综述[J]. 智能计算机与应用, 2022, 12(2): 143-147.
ZHANG X K, LI Z T.A survey on photovoltaic array fault diagnosis algorithms[J]. Intelligent computer and applications, 2022, 12(2): 143-147.
[3] 杨佳葳, 闫正兵, 李剑锋, 等. 基于序差和的光伏阵列故障分类方法[J]. 控制工程, 2020, 27(8): 1425-1428.
YANG J W, YAN Z B, LI J F, et al.Photovoltaic array fault classification method based on sum of ranking differences[J]. Control engineering of China, 2020, 27(8): 1425-1428.
[4] 徐小奇, 刘海波. 基于神经网络的光伏电池红外热图热斑识别[J]. 科学技术创新, 2021(16): 92-94.
XU X Q, LIU H B.Identification of hot spots in infrared thermogram of photovoltaic cells based on neural network[J]. Scientific and technological innovation, 2021(16): 92-94.
[5] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[6] 姜萍, 郭欢欢, 代金超. 基于SSA-DBN的光伏阵列故障诊断方法[J]. 电源技术, 2022, 46(8): 925-929.
JIANG P, GUO H H, DAI J C.A fault diagnosis method for photovoltaic array based on SSA-DBN[J]. Chinese journal of power sources, 2022, 46(8): 925-929.
[7] 谢琳琳, 朱武, 崔昊杨. 改进遗传优化神经网络的光伏阵列故障诊断[J]. 电源技术, 2022, 46(7): 802-806.
XIE L L, ZHU W, CUI H Y.BP netural network based on improved genetic algorithm for fault diagnosis of photovoltaic array[J]. Chinese journal of power sources, 2022, 46(7): 802-806.
[8] 叶进, 卢泉, 王钰淞, 等. 基于级联随机森林的光伏故障诊断模型研究[J]. 太阳能学报, 2021, 42(3): 358-362.
YE J, LU Q, WANG Y S, et al.Research on pv fault diagnosis model based on cascaded random forest[J]. Acta energiae solaris sinica, 2021, 42(3): 358-362.
[9] 赵靖英, 吴晶晶, 张雪辉, 等. 基于萤火虫扰动麻雀搜索算法-极限学习机的光伏阵列故障诊断方法研究[J]. 电网技术, 2023, 47(4): 1612-1625.
ZHAO J Y, WU J J, ZHANG X H, et al.Fault diagnosis of photovoltaic arrays based on sparrow search algorithm with firefly perturbation-extreme learning machine[J]. Power system technology, 2023, 47(4): 1612-1625.
[10] 徐先峰, 李芷菡, 刘状壮, 等. 基于半监督学习标签传播-极端随机树算法的光伏阵列故障诊断及定位[J]. 电网技术, 2023, 47(3): 1038-1047.
XU X F, LI Z H, LIU Z Z, et al.Fault diagnosis and localization of photovoltaic arrays based on semi-supervised learning label propagation-extra tree algorithm[J]. Power system technology, 2023, 47(3): 1038-1047.
[11] 卢雪琴, 李长安, 吴忠强. 基于鲸鱼算法优化极限学习机的微电网故障诊断[J]. 智慧电力, 2022, 50(2): 15-21.
LU X Q, LI C A, WU Z Q.Microgrid fault diagnosis based on extreme learning machine optimized by whale algorithm[J]. Smart power, 2022, 50(2): 15-21.
[12] 王毅, 李曙, 李松浓, 等. 瞬时特征下极限学习机在接地故障诊断中的应用[J]. 电子测量与仪器学报, 2022, 36(1): 212-219.
WANG Y, LI S, LI S N, et al.Application of ground fault diagnosis based on extreme learning machine under instantaneous characteristics[J]. Journal of electronic measurement and instrumentation, 2022, 36(1): 212-219.
[13] 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670.
XU R, LIANG X, QI J S, et al.Advances and trends in extreme learning machine[J]. Chinese journal of computers, 2019, 42(7): 1640-1670.
[14] DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al.Coati Optimization Algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-based systems, 2023, 259: 110011.
[15] 施磊, 郝武帮, 郭晓龙. 基于Levy飞行策略和改进灰狼算法的光伏阵列MPPT研究[J]. 电力科学与工程, 2023, 39(6): 17-24.
SHI L, HAO W B, GUO X L.Study on MPPT of photovoltaic array based on levy flight strategy and improved grey wolf algorithm[J]. Electric power science and engineering, 2023, 39(6): 17-24.
[16] 郭成, 谢浩, 孟贤, 等. 基于灰狼优化算法的负荷模型参数辨识[J]. 电力科学与技术学报, 2022, 37(2): 30-37.
GUO C, XIE H, MENG X, et al.Research on parameter identification of load model based on GWO algorithm[J]. Journal of electric power science and technology, 2022, 37(2): 30-37.
[17] 李大华, 聂前, 田禾, 等. 改进海鸥优化算法在光伏系统MPPT中的应用[J]. 电源技术, 2022, 46(5): 556-559.
LI D H, NIE Q, TIAN H, et al.Improved seagull optimization algorithm for MPPT in PV systems[J]. Chinese journal of power sources, 2022, 46(5): 556-559.
[18] 冯文涛, 邓兵. 鲸鱼优化算法的全局收敛性分析及参数选择研究[J]. 控制理论与应用, 2021, 38(5): 641-651.
FENG W T, DENG B.Global convergence analysis and research on parameter selection of whale optimization algorithm[J]. Control theory & applications, 2021, 38(5): 641-651.
[19] AGUSHAKA J O, EZUGWU A E, ABUALIGAH L.Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer[J]. Neural computing and applications, 2023, 35(5): 4099-4131.
基金
国家自然科学基金(62363030); 石河子大学国际科技合作推进计划项目(GJHZ202108)