基于建筑光伏的社区综合能源系统热电交互优化

魏长祺, 周源, 金莺, 赵磊, 李雨欣, 王江江

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 480-490.

PDF(1997 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1997 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 480-490. DOI: 10.19912/j.0254-0096.tynxb.2023-1469

基于建筑光伏的社区综合能源系统热电交互优化

  • 魏长祺1, 周源1, 金莺2, 赵磊1, 李雨欣1, 王江江1
作者信息 +

OPTIMIZATION OF THERMOELECTRIC INTERACTION STRATEGRY OF COMMUNITY INTEGRATED ENERGY SYSTEM BASED ON BUILDING PHOTOVOLTAIC

  • Wei Changqi1, Zhou Yuan1, Jin Ying2, Zhao Lei1, Li Yuxin1, Wang Jiangjiang1
Author information +
文章历史 +

摘要

针对光伏建筑一体化社区的产消失衡问题,以建筑光伏的就地消纳和社区综合能源系统的低碳经济调度为重点开展能源共享,在保护参与成员隐私的前提下采用交替方向乘子法制定社区群总运行成本最低策略,并基于参与社区的贡献度通过 Shapley值法进行效益分配。对交互运行下的社区综合能源系统进行数学分析,并与独立运行下的社区综合能源系统进行比较。算例结果表明:交互运行策略较独立运行策略带来的运行成本效益提升范围为3%~5%,碳减排效益提升范围为4%~8%,光伏消纳提升率在4%~25%之间;然而,交互运行策略对于单一多电社区组合的效益提升甚微。

Abstract

To address the imbalance between the production and consumption of solar power in integrated communities, this article focuses on optimizing the on-site consumption of building-integrated photovoltaics (BIPV) and implementing low-carbon economic scheduling in community energy systems to facilitate energy sharing. The study employs the alternating direction multiplier method to develop a strategy for minimizing the total operating cost of community groups while also preserving the privacy of participating members. Additionally, the Shapley value method is utilized to allocate benefits based on the contribution of participating communities. Through mathematical analysis, this article examines the performance of the community integrated energy system under interactive operation and compares it with the independent operation approach. The calculations demonstrate that the interactive operation strategy offers a 3% to 5% increase in operating cost efficiency compared to independent operations. It also results in a carbon emission reduction efficiency improvement of 4% to 8% and a 4% to 25% increase in photovoltaic consumption. However, the interactive operation strategy has a negligible impact on the efficiency improvement in a single multi-power community combination.

关键词

综合能源系统 / 优化调度 / 光伏建筑一体化 / 光伏消纳 / 效益分配

Key words

integrated energy system / optimal scheduling / building integrated photovoltaics / photovoltaic absorption / benefit allocation

引用本文

导出引用
魏长祺, 周源, 金莺, 赵磊, 李雨欣, 王江江. 基于建筑光伏的社区综合能源系统热电交互优化[J]. 太阳能学报. 2025, 46(1): 480-490 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1469
Wei Changqi, Zhou Yuan, Jin Ying, Zhao Lei, Li Yuxin, Wang Jiangjiang. OPTIMIZATION OF THERMOELECTRIC INTERACTION STRATEGRY OF COMMUNITY INTEGRATED ENERGY SYSTEM BASED ON BUILDING PHOTOVOLTAIC[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 480-490 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1469
中图分类号: TM732   

参考文献

[1] 于瑛, 姚星, 丑锦帅, 等. 城镇典型住宅建筑屋顶分布式光伏系统潜能分析[J]. 太阳能学报, 2023, 44(7): 182-190.
YU Y, YAO X, CHOU J S, et al.Potential analysis of distributed pv systems on roof of typical residential building in urban area[J]. Acta energiae solaris sinica, 2023, 44(7): 182-190.
[2] 魏炜, 贾皓越, 穆云飞, 等. 光电-光热区域综合能源系统太阳能消纳能力评估模型[J]. 电力系统自动化, 2019, 43(20): 16-23, 38.
WEI W, JIA H Y, MU Y F, et al.Assessment model of solar energy accommodation capability of regional integrated energy system with PVs and solar collectors[J]. Automation of electric power systems, 2019, 43(20): 16-23, 38.
[3] 杨承, 杨泽亮, 蔡睿贤. 基于全工况性能的冷热电联产系统效率指标比较[J]. 中国电机工程学报, 2008, 28(2): 8-13.
YANG C, YANG Z L, CAI R X.Comparison of CCHP efficiencies based on off-design characteristics[J]. Proceedings of the CSEE, 2008, 28(2): 8-13.
[4] 熊伟, 马志程, 张晓英, 等. 计及风、光消纳的风电-光伏-光热互补发电二层优化调度[J]. 太阳能学报, 2022, 43(7): 39-48.
XIONG W, MA Z C, ZHANG X Y, et al.Two-layer optimal dispatch of WF-PV-CSP hybrid power generation considering wind power and photovoltaic consumption[J]. Acta energiae solaris sinica, 2022, 43(7): 39-48.
[5] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[6] 裴玮, 杜妍, 李洪涛, 等. 应对微网群大规模接入的互联和互动新方案及关键技术[J]. 高电压技术, 2015, 41(10): 3193-3203.
PEI W, DU Y, LI H T, et al.Novel solution and key technology of interconnection and interaction for large scale microgrid cluster integration[J]. High voltage engineering, 2015, 41(10): 3193-3203.
[7] 曹紫霖, 王文静, 赵薇, 等. 考虑需求响应的负荷密集区分布式综合能源系统优化调度研究[J]. 综合智慧能源, 2023, 45(7): 11-21.
CAO Z L, WANG W J, ZHAO W, et al.Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response[J]. Integrated intelligent energy, 2023, 45(7): 11-21.
[8] 曲建峰, 汤波, 余光正, 等.基于源荷匹配的多微网功率交互及共享储能规划[EB/OL]. 现代电力, 1-13[2024-12-27].https://doi.org/10.19725/j.cnki.1007-2322.2022.0456.
QU Y F, TANG B, YU G Z, et al.Multi-microgrids power interaction and shared energy storage planning based on generation-load matching[EB/OL]. Modern electric power, 1-13[2024-12-27]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0456.
[9] 吴迪凡, 张楠, 韩钰, 等. 考虑能量梯级高效利用的多微网综合能源系统优化调度策略[J]. 电力大数据, 2023, 26(4): 19-27.
WU D F, ZHANG N, HAN Y, et al.Optimal dispatching strategy for multi-microgrids integrated energy system based on the efficiency of cascade utilization of energy[J]. Power systems and big data, 2023, 26(4): 19-27.
[10] XU A Q, WU J, ZHOU G L, et al.Economic, reliability, environmental and operation factors to achieve optimal operations of multiple microgrids[J]. Computers & chemical engineering, 2023, 176: 108279.
[11] 刘念, 赵璟, 王杰, 等. 基于合作博弈论的光伏微电网群交易模型[J]. 电工技术学报, 2018, 33(8): 1903-1910.
LIU N, ZHAO J, WANG J, et al.A trading model of PV microgrid cluster based on cooperative game theory[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1903-1910.
[12] REN F K, LIN X Z, MA X T, et al.A two-stage planning method for design and dispatch of distributed energy networks Considering Multiple energy trading[J]. Sustainable cities and society, 2023, 96: 104666.
[13] ZHANG G Q, WANG J J, REN F K, et al.Collaborative optimization for multiple energy stations in distributed energy network based on electricity and heat interchanges[J]. Energy, 2021, 222: 119987.
[14] 马丽叶, 刘美思, 尹钰, 等. 主动配电网中多微网鲁棒环境经济调度研究[J]. 太阳能学报, 2020, 41(11): 1-10.
MA L Y, LIU M S, YIN Y, et al.Robust environment economic scheduling of multimicrogrids in active distribution network[J]. Acta energiae solaris sinica, 2020, 41(11): 1-10.
[15] 王守相, 张齐, 王瀚, 等. 高可再生能源渗透率下的区域多微网系统优化规划方法[J]. 电力自动化设备, 2018, 38(12): 33-38, 52.
WANG S X, ZHANG Q, WANG H, et al.Optimal planning method for regional multi-microgrid system with high renewable energy penetration[J]. Electric power automation equipment, 2018, 38(12): 33-38, 52.
[16] 叶宇剑, 袁泉, 刘文雯, 等. 基于参数共享机制多智能体深度强化学习的社区能量管理协同优化[J]. 中国电机工程学报, 2022, 42(21): 7682-7695.
YE Y J, YUAN Q, LIU W W, et al.Parameter sharing empowered multi-agent deep reinforcement learning for coordinated management of energy communities[J]. Proceedings of the CSEE, 2022, 42(21): 7682-7695.
[17] MONFAREDI F, SHAYEGHI H, SIANO P.Multi-agent deep reinforcement learning-based optimal energy management for grid-connected multiple energy carrier microgrids[J]. International journal of electrical power & energy systems, 2023, 153: 109292.
[18] HOU H, WANG Z, CHEN Y, et al.Multi-stage hybrid energy management strategy for reducing energy abandonment and load losses among multiple microgrids[J]. International journal of electrical power & energy systems, 2023, 148: 108773.
[19] 周晓倩, 艾芊. 配电网与多微网联合分布式鲁棒经济调度[J]. 电力系统自动化, 2020, 44(7): 23-30.
ZHOU X Q, AI Q.Combined distributed robust economic dispatch of distribution network and multiple microgrids[J]. Automation of electric power systems, 2020, 44(7): 23-30.
[20] 陈刚, 杨毅, 杨晓梅, 等. 基于分布式牛顿法的微电网群分布式优化调度方法[J]. 电力系统自动化, 2017, 41(21): 156-162.
CHEN G, YANG Y, YANG X M, et al.Distributed optimization scheduling method for microgrid cluster based on distributed Newton method[J]. Automation of electric power systems, 2017, 41(21): 156-162.
[21] 王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42(6): 1718-1727.
WANG H, AI Q, WU J H, et al.Bi-level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power system technology, 2018, 42(6): 1718-1727.
[22] 黄悦华, 刘兴韬, 陈庆, 等. 基于区块链的微网群交易机制及日前优化调度[J]. 科学技术与工程, 2023, 23(2): 610-618.
HUANG Y H, LIU X T, CHEN Q, et al.Micogrids trading mechanism and day-ahead optimal scheduling based on blockchain[J]. Science technology and engineering, 2023, 23(2): 610-618.
[23] ZHAO X, ZHENG W Y, HOU Z H, et al.Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy[J]. Energy, 2022, 238: 121733.
[24] RAJAEI A, FATTAHEIAN-DEHKORDI S, FOTUHI-FIRUZABAD M, et al.Decentralized transactive energy management of multi-microgrid distribution systems based on ADMM[J]. International journal of electrical power & energy systems, 2021, 132: 107126.
[25] LI Y X, WANG J J, ZHOU Y, et al.Multi-dimension day-ahead scheduling optimization of a community-scale solar-driven CCHP system with demand-side management[J]. Renewable and sustainable energy reviews, 2023, 185: 113654.
[26] 任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热电联供系统优化[J]. 工程热物理学报, 2021, 42(1): 16-24.
REN F K, CHEN Y, WANG J J.Optimization of combined cooling, heating, and power system coupled with solar and geothermal energies[J]. Journal of engineering thermophysics, 2021, 42(1): 16-24.

基金

国家自然科学基金(52090064)

PDF(1997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/