基于两阶段聚类和MCMC算法的风光出力序列建模方法

郭红霞, 邹桂林, 王子强, 陈凌轩, 马骞, 陈亦平

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 491-502.

PDF(1842 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1842 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 491-502. DOI: 10.19912/j.0254-0096.tynxb.2023-1473

基于两阶段聚类和MCMC算法的风光出力序列建模方法

  • 郭红霞1, 邹桂林1, 王子强2, 陈凌轩1, 马骞2, 陈亦平2
作者信息 +

A MODELING METHOD FOR WIND AND SOLAR POWER SERIES BASED ON A TWO-STAGE CLUSTERING AND MCMC ALGORITHM

  • Guo Hongxia1, Zou Guilin1, Wang Ziqiang2, Chen Lingxuan1, Ma Qian2, Chen Yiping2
Author information +
文章历史 +

摘要

针对风光出力的随机性建模问题,提出一种基于两阶段聚类和双层马尔科夫链模型的风光相关出力序列建模方法。首先采用两阶段聚类得到不同的风光典型日出力模式,第1阶段采用自组织映射聚类方法识别不同气象条件下的光伏出力类型;第2阶段采用近邻传播聚类方法对不同光伏出力类型对应的风电出力样本进行聚类。其次,建立双层马尔科夫链模型描述风光出力的相依变化,上层建立单变量马尔科夫链模型描述风光出力模式的日间转移,下层建立双变量马尔科夫链模型描述风光出力日内相邻时刻的状态转移。最后,采用MCMC模拟方法得到指定时间长度的风光出力序列。仿真算例表明,所提方法在各项评价指标上均优于传统MCMC方法及Copula模型,能生成更符合风光实际相关性的出力序列。

Abstract

In time series production simulation of wind-solar power systems, generating wind-solar output sequences with temporal and spatial correlation characteristics is crucial for improving the reliability of production simulation and guiding the planning and operation of power systems. A method is proposed to address the stochastic modeling problem of wind-solar output. It involves modeling wind-solar-related output sequences using a two-stage clustering and a two-layer Markov chain model. Different wind and solar typical daily output patterns are initially obtained through a two-stage clustering process. In the first stage, a self-organized mapping clustering method is used to identify solar output patterns under various meteorological conditions. The second stage utilizes the affinity propagation clustering method to group the wind power output samples that correspond to different solar output patterns. Secondly, a two-layer Markov chain model is constructed to depict the interdependent variations in wind-solar power output. A univariate Markov chain model is developed in the upper layer to illustrate the day-to-day transition of the wind-solar power pattern, while a bivariate Markov chain model is established in the lower layer to depict the state transition of the neighboring moments of the wind-solar power within the intraday. Finally, the MCMC simulation method is used to generate the wind-solar power sequence for a specified duration. The simulation example demonstrates that the proposed method outperforms the traditional MCMC method and Copula model in all evaluation indicators. It can generate a power output sequence that more accurately reflects the actual correlation between wind and solar.

关键词

时间序列 / 风电场 / 光伏电站 / 聚类分析 / 马尔科夫链蒙特卡洛方法 / 时空相关性

Key words

time series / wind farm / solar power stations / cluster analysis / MCMC method / spatio-temporal correlation

引用本文

导出引用
郭红霞, 邹桂林, 王子强, 陈凌轩, 马骞, 陈亦平. 基于两阶段聚类和MCMC算法的风光出力序列建模方法[J]. 太阳能学报. 2025, 46(1): 491-502 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1473
Guo Hongxia, Zou Guilin, Wang Ziqiang, Chen Lingxuan, Ma Qian, Chen Yiping. A MODELING METHOD FOR WIND AND SOLAR POWER SERIES BASED ON A TWO-STAGE CLUSTERING AND MCMC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 491-502 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1473
中图分类号: TM743   

参考文献

[1] 王建学, 李清涛, 王秀丽, 等. 大规模新能源并网系统电源规划方法[J]. 中国电机工程学报, 2020, 40(10): 3114-3124.
WANG J X, LI Q T, WANG X L, et al.A generation expansion planning method for power systems with large-scale new energy[J]. Proceedings of the CSEE, 2020, 40(10): 3114-3124.
[2] LIANG Z, CHEN H, CHEN S, et al.Probability-driven transmission expansion planning with high-penetration renewable power generation: a case study in Northwestern China[J]. Applied energy, 2019, 255: 113610.
[3] 彭旭, 李好文, 郑岗, 等. 基于时序生产模拟的可再生能源消纳评估方法研究[J]. 太阳能学报, 2020, 41(11): 26-30.
PENG X, LI H W, ZHENG G, et al.Research on renewable energy accommodation assessment method based on time series production simulation[J]. Acta energiae solaris sinica, 2020, 41(11): 26-30.
[4] 丁明, 林玉娟. 考虑风光荷不确定性的随机生产模拟[J]. 太阳能学报, 2018, 39(10): 2937-2944.
DING M, LIN Y J.Probabilistic production simulation considering randomness of renewable wind power, photovoltaic and load[J]. Acta energiae solaris sinica, 2018, 39(10): 2937-2944.
[5] YUAN R, WANG B, SUN Y Q, et al.Conditional style-based generative adversarial networks for renewable scenario generation[J]. IEEE transactions on power systems, 2023, 38(2): 1281-1296.
[6] 黄南天, 王文婷, 蔡国伟, 等. 计及复杂气象耦合特性的模块化去噪变分自编码器多源-荷联合场景生成[J]. 中国电机工程学报, 2019, 39(10): 2924-2934.
HUANG N T, WANG W T, CAI G W, et al.The joint scenario generation of multi source-load by modular denoising variational autoencoder considering the complex coupling characteristics of meteorology[J]. Proceedings of the CSEE, 2019, 39(10): 2924-2934.
[7] 刘映尚, 马骞, 王子强, 等. 新型电力系统电力电量平衡调度问题的思考[J]. 中国电机工程学报, 2023, 43(5): 1694-1706.
LIU Y S, MA Q, WANG Z Q, et al.Cogitation on power and electricity balance dispatching in new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1694-1706.
[8] CHEN P Y, PEDERSEN T, BAK-JENSEN B, et al.ARIMA-based time series model of stochastic wind power generation[J]. IEEE transactions on power systems, 2010, 25(2): 667-676.
[9] 邹金, 赖旭, 汪宁渤. 风电随机出力的时间序列模型[J]. 电网技术, 2014, 38(9): 2416-2421.
ZOU J, LAI X, WANG N B.Time series model of stochastic wind power generation[J]. Power system technology, 2014, 38(9): 2416-2421.
[10] PAPAEFTHYMIOU G, KLOCKL B.MCMC for wind power simulation[J]. IEEE transactions on energy conversion, 2008, 23(1): 234-240.
[11] 朱晨曦, 张焰, 严正, 等. 采用改进马尔科夫链蒙特卡洛法的风电功率序列建模[J]. 电工技术学报, 2020, 35(3): 577-589.
ZHU C X, ZHANG Y, YAN Z, et al.A wind power time series modeling method based on the improved Markov chain Monte Carlo method[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 577-589.
[12] 徐沈智, 艾小猛, 邹佳芯, 等. 优选状态数的MCMC算法在风电功率序列生成中的应用[J]. 电力自动化设备, 2019, 39(5): 61-68.
XU S Z, AI X M, ZOU J X, et al.Application of optimizing state number Markov chain Monte Carlo algorithm in wind power generation[J]. Electric power automation equipment, 2019, 39(5): 61-68.
[13] 辛阔, 马骞, 许琴, 等. 基于月份划分与指定日类型的风电出力序列场景生成方法[J]. 电力系统自动化, 2023, 47(15): 151-161.
XIN K, MA Q, XU Q, et al.Wind power output sequence scenario generation method based on monthly division and specified day type[J]. Automation of electric power systems, 2023, 47(15): 151-161.
[14] 丁明, 鲍玉莹, 毕锐. 应用改进马尔科夫链的光伏出力时间序列模拟[J]. 电网技术, 2016, 40(2): 459-464.
DING M, BAO Y Y, BI R.Simulation of PV output time series used improved Markov chain[J]. Power system technology, 2016, 40(2): 459-464.
[15] BHAUMIK D, CROMMELIN D, KAPODISTRIA S, et al.Hidden Markov models for wind farm power output[J]. IEEE transactions on sustainable energy, 2019, 10(2): 533-539.
[16] 李湃, 刘纯, 黄越辉, 等. 基于隐马尔科夫模型的多风电场相关性出力时间序列建模方法[J]. 中国电机工程学报, 2019, 39(19): 5683-5691, 5896.
LI P, LIU C, HUANG Y H, et al.Modeling correlated power time series of multiple wind farms based on hidden Markov model[J]. Proceedings of the CSEE, 2019, 39(19): 5683-5691, 5896.
[17] LI Y F, HU B, NIU T, et al.GMM-HMM-based medium- and long-term multi-wind farm correlated power output time series generation method[J]. IEEE access, 2094, 9: 90255-90267.
[18] LIN S F, LIU C T, SHEN Y W, et al.Stochastic planning of integrated energy system via frank-copula function and scenario reduction[J]. IEEE transactions on smart grid, 2022, 13(1): 202-212.
[19] 张博, 申建建, 程春田, 等. 基于C藤Copula理论的水风互补系统调峰方法[J]. 中国电机工程学报, 2022, 42(15): 5523-5535.
ZHANG B, SHEN J J, CHENG C T, et al.Peak-shaving method of hydro-wind power complementary system based on C-vine Copula theory[J]. Proceedings of the CSEE, 2022, 42(15): 5523-5535.
[20] 罗钢, 石东源, 陈金富, 等. 风光发电功率时间序列模拟的MCMC方法[J]. 电网技术, 2014, 38(2): 321-327.
LUO G, SHI D Y, CHEN J F, et al.A Markov chain Monte Carlo method for simulation of wind and solar power time series[J]. Power system technology, 2014, 38(2): 321-327.
[21] JIN J X, YE L, LI J C, et al.Wind and photovoltaic power time series data aggregation method based on an ensemble clustering and Markov chain[J]. CSEE journal of power and energy systems, 2022, 8(3): 757-768.
[22] 夏泠风, 黎嘉明, 赵亮, 等. 考虑光伏电站时空相关性的光伏出力序列生成方法[J]. 中国电机工程学报, 2017, 37(7): 1982-1993.
XIA L F, LI J M, ZHAO L, et al.A PV power time series generating method considering temporal and spatial correlation characteristics[J]. Proceedings of the CSEE, 2017, 37(7): 1982-1993.
[23] MCLOUGHLIN F, DUFFY A, CONLON M.A clustering approach to domestic electricity load profile characterisation using smart metering data[J]. Applied energy, 2015, 141: 190-199.
[24] 刘艳峰, 杨燕子, 罗西. 关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究[J]. 太阳能学报, 2023, 44(8): 110-118.
LIU Y F, YANG Y Z, LUO X.Multi-objective optimization scheduling model of flexible energy consumption load in summer for different types of rural households in Guanzhong plain[J]. Acta energiae solaris sinica, 2023, 44(8): 110-118.
[25] FREY B J, DUECK D.Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.

基金

国家重点研发计划(2022YFB2403500)

PDF(1842 KB)

Accesses

Citation

Detail

段落导航
相关文章

/