基于暂态能量的直驱风电机组阻尼研究

曹娜, 韩清宇, 张子洁, 于群

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 42-52.

PDF(2471 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2471 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 42-52. DOI: 10.19912/j.0254-0096.tynxb.2023-1474

基于暂态能量的直驱风电机组阻尼研究

  • 曹娜1, 韩清宇1, 张子洁2, 于群1
作者信息 +

RESEARCH ON DAMPING OF DIRECT DRIVE WIND TURBINE BASED ON TRANSIENT ENERGY

  • Cao Na1, Han Qingyu1, Zhang Zijie2, Yu Qun1
Author information +
文章历史 +

摘要

风电机组控制参数设置不当会引起风电机组阻尼变弱而发生自由振荡。为采取合理措施抑制风电机组的振荡,需要研究风电机组控制参数对机组阻尼的影响机理。以直驱风电机组为例,首先计及锁相环控制的比例系数Kppll和积分系数Kipll、网侧变流器内环控制的比例系数Kp1和积分参数Ki1,推导直驱风电机组暂态能量函数,分析不同控制参数对机组暂态能量及阻尼的影响机理;定义机组耗能功率及阻尼影响因子,定量分析不同控制参数对机组阻尼的影响;最后,在PSCAD/EMTDC平台上建模分析,通过耗能功率的变化深入分析控制参数对机组阻尼的影响。仿真结果表明,一定范围内变流器控制参数减小,直驱机组耗能功率增大,阻尼变弱;锁相环控制参数增大,机组耗能功率增大,阻尼变弱;控制参数Kp1Ki1KppllKipll单位变化率相同时,对机组阻尼的影响按照从大到小的顺序为Ki1Kp1KppllKipll

Abstract

Improper setting of wind turbine control parameters can cause the damping of the wind turbine to weaken and cause free oscillation. In order to take reasonable measures to suppress the oscillation of wind turbines, it is necessary to study the mechanism of the influence of wind turbine control parameters on unit damping. Taking a direct-drive wind turbine as an example, firstly, taking into account the proportional coefficient Kppll and integral coefficient Kipll of the phase-locked loop control, the proportional coefficient Kp1 and integral parameter Ki1 of the internal loop control of the grid side converter, the transient energy function of the direct-drive wind turbine is derived, and the influence mechanism of different control parameters on the transient energy and damping of the unit is analyzed; Define the energy consumption power and damping influencing factors of the unit, and quantitatively analyze the impact of different control parameters on the damping of the unit; Finally, model and analyze on the PSCAD/EMTDC platform, and deeply analyze the impact of control parameters on unit damping through changes in energy consumption power. The simulation results show that within a certain range, the control parameters of the inverter decrease, the energy consumption power of the direct drive unit increases, and the damping weakens; As the control parameters of the phase-locked loop increase, the energy consumption power of the unit increases, and the damping weakens; When the unit change rates of control parameters Kp1,Ki1,Kppll,and Kipll are the same, the impact on unit damping is in descending order of Ki1,Kp1,Kppll and Kipll.

关键词

风电场 / 稳定性 / 控制 / 暂态能量函数 / 阻尼特性

Key words

wind farm / stability / control / transient energy function / damping characteristic

引用本文

导出引用
曹娜, 韩清宇, 张子洁, 于群. 基于暂态能量的直驱风电机组阻尼研究[J]. 太阳能学报. 2025, 46(1): 42-52 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1474
Cao Na, Han Qingyu, Zhang Zijie, Yu Qun. RESEARCH ON DAMPING OF DIRECT DRIVE WIND TURBINE BASED ON TRANSIENT ENERGY[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 42-52 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1474
中图分类号: TK83   

参考文献

[1] 薛安成, 付潇宇, 乔登科, 等. 风电参与的电力系统次同步振荡机理研究综述和展望[J]. 电力自动化设备, 2020, 40(9): 118-128.
XUE A C, FU X Y, QIAO D K, et al.Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation[J]. Electric power automation equipment, 2020, 40(9): 118-128.
[2] 邵冰冰, 赵书强, 高本锋, 等. 多直驱风机经VSC-HVDC并网系统场内/场网次同步振荡特性分析[J]. 中国电机工程学报, 2020, 40(12): 3835-3847.
SHAO B B, ZHAO S Q, GAO B F, et al.Inside-wind-farm/wind-farm-grid sub-synchronous oscillation characteristics analysis in multiple D-PMSGs interfaced with VSC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(12): 3835-3847.
[3] 潘尔生, 王智冬, 王栋, 等. 基于锁相环同步控制的双馈风机弱电网接入稳定性分析[J]. 高电压技术, 2020, 46(1): 170-178.
PAN E S, WANG Z D, WANG D, et al.Stability analysis of phase-locked loop synchronized DFIGs in weak grids[J]. High voltage engineering, 2020, 46(1): 170-178.
[4] 占颖, 吴琛, 谢小荣, 等. 风电并网系统次同步振荡的频域模式分析[J]. 电力系统自动化, 2020, 44(18): 90-97.
ZHAN Y, WU C, XIE X R, et al.Frequency domain modal analysis of subsynchronous oscillation in grid-connected wind power system[J]. Automation of electric power systems, 2020, 44(18): 90-97.
[5] 任必兴, 杜文娟, 王海风, 等. 锁相环控制对永磁直驱风机并网次同步振荡稳定性的影响: 控制参数安全域[J]. 电力自动化设备, 2020, 40(9): 142-149.
REN B X, DU W J, WANG H F, et al.Influence of PLL control on sub-synchronous oscillation stability of grid-connected PMSG: control parameter safety region[J]. Electric power automation equipment, 2020, 40(9): 142-149.
[6] 张思彤, 梁纪峰, 马燕峰, 等. 直驱风电场经柔性直流输电并网的宽频振荡特性分析[J]. 电力系统保护与控制, 2022, 50(14): 33-42.
ZHANG S T, LIANG J F, MA Y F, et al.Broadband oscillation characteristics analysis of a VSC-HVDC connected direct drive wind farm[J]. Power system protection and control, 2022, 50(14): 33-42.
[7] LAMICHHANE S, MITHULANTHAN N, SETIADI H.Influence of reduced inertia by added wind farm on low-frequency oscillatory instability of power systems[C]//2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS). Kitakyushu, Japan, 2018: 1-6.
[8] 陈斐泓, 杨健维, 廖凯, 等. 基于频率扫描的双馈风电机组次同步控制相互作用分析[J]. 电力系统保护与控制, 2017, 45(24): 84-91.
CHEN F H, YANG J W, LIAO K, et al.Sub-synchronous control interaction analysis in doubly-fed induction generator based on frequency scanning[J]. Power system protection and control, 2017, 45(24): 84-91.
[9] ALATAR F, MEHRIZI-SANI A.Frequency scan-based mitigation approach of subsynchronous control interaction in type-3 wind turbines[J]. Energies, 2021, 14(15): 4626.
[10] 曹娜, 李文强, 于群. 数字控制三相并网逆变器改进离散模型[J]. 太阳能学报, 2020, 41(4): 357-365.
CAO N, LI W Q, YU Q.Improved discrete-time model of digital controlled three-phase grid-connected inverter[J]. Acta energiae solaris sinica, 2020, 41(4): 357-365.
[11] 万书亭, 程侃如, 绳晓玲, 等. 基于等效风速的风电机组参数对输出功率波动和功率损失特性的影响[J]. 太阳能学报, 2022, 43(1): 125-131.
WAN S T, CHENG K R, SHENG X L, et al.Effects of wind turbines parameters on output power fluctuation and power loss characteristics based on equivalent wind speed[J]. Acta energiae solaris sinica, 2022, 43(1): 125-131.
[12] 彭技礼, 贾祺, 严干贵, 等. 面向低频振荡分析的直驱风电机组阻尼转矩建模[J]. 电力自动化设备, 2022, 42(8): 39-46.
PENG J L, JIA Q, YAN G G, et al.Damping torque modeling of direct-drive wind turbine for low-frequency oscillation analysis[J]. Electric power automation equipment, 2022, 42(8): 39-46.
[13] 曹娜, 万珂, 于群. 考虑风速变化的双馈风电机组暂态能量函数及振荡分析[J]. 电力系统自动化, 2022, 46(20): 92-99.
CAO N, WAN K, YU Q.Transient energy function and oscillation analysis of doubly-fed wind turbines considering variation of wind speed[J]. Automation of electric power systems, 2022, 46(20): 92-99.
[14] 陈磊, 闵勇, 胡伟. 基于振荡能量的低频振荡分析与振荡源定位 (一)理论基础与能量流计算[J]. 电力系统自动化, 2012, 36(3): 22-27, 86.
CHEN L, MIN Y, HU W.Low frequency oscillation analysis and oscillation source location based on oscillation energy part one mathematical foundation and energy flow computation[J]. Automation of electric power systems, 2012, 36(3): 22-27, 86.
[15] 陈磊, 王文婕, 王茂海, 等. 利用暂态能量流的次同步强迫振荡扰动源定位及阻尼评估[J]. 电力系统自动化, 2016, 40(19): 1-8.
CHEN L, WANG W J, WANG M H, et al.Disturbance source location of subsynchronous forced oscillation and damping evaluation using transient energy flow[J]. Automation of electric power systems, 2016, 40(19): 1-8.
[16] MA J, SHEN Y Q.Stability assessment of DFIG subsynchronous oscillation based on energy dissipation intensity analysis[J]. IEEE transactions on power electronics, 2020, 35(8): 8074-8087.
[17] 任怡娜, 陈磊, 闵勇, 等. 次同步振荡中暂态能量流与电功率和阻尼转矩的关系[J]. 电力系统自动化, 2018, 42(22): 52-58.
REN Y N, CHEN L, MIN Y, et al.Relationship between transient energy flow, electric power and damping torque in subsynchronous oscillation[J]. Automation of electric power systems, 2018, 42(22): 52-58.
[18] SHEN Y Q, MA J, WANG L T.Study on DFIG dissipation energy model and low-frequency oscillation mechanism considering the effect of PLL[J]. IEEE transactions on power electronics, 2020, 35(4): 3348-3364.
[19] MA J, YANG Z M, ZHOU Y Q, et al.Study on the oscillation transmission paths in direct-drive wind farm transmitted via flexible DC system based on dynamic energy flow[J]. IET renewable power generation, 2022, 16(5): 966-987.
[20] 孙正龙, 姜权峰, 王嘉琛, 等. 含风电电力系统机电振荡局部阻尼评估方法[J]. 高电压技术, 2021, 47(10): 3452-3466.
SUN Z L, JIANG Q F, WANG J C, et al.Evaluation method of local damping of electromechanical oscillation of power systems containing wind turbines[J]. High voltage engineering, 2021, 47(10): 3452-3466.
[21] 闵勇, 陈磊. 包含感应电动机模型的电力系统暂态能量函数[J]. 中国科学(E辑: 技术科学), 2007, 37(9): 1117-1125.
MIN Y, CHEN L.Transient energy function of power system including induction motor model[J]. Science in China (series E: technological sciences), 2007, 37(9): 1117-1125.
[22] XU Y Y, NIAN H, CHEN L.Small-signal modeling and analysis of DC-link dynamics in type-IV wind turbine system[J]. IEEE transactions on industrial electronics, 2021, 68(2): 1423-1433.
[23] SHEN Y Q, MA J.Stability assessment of direct-drive wind farm sub/super synchronous oscillation based on negative gradient of dynamic energy[C]//2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). Chengdu, China, 2021: 1-7.
[24] 张敏. 直驱风电场次/超同步振荡动态特性及控制策略研究[D]. 北京: 华北电力大学, 2021.
ZHANG M.Study on dynamic characteristics and control strategy of sub-synchronous oscillation in direct-driven wind farm[D]. Beijing: North China Electric Power University, 2021.
[25] BI T S, LI J Y, ZHANG P, et al.Study on response characteristics of grid-side converter controller of PMSG to sub-synchronous frequency component[J]. IET renewable power generation, 2017, 11(7): 966-972.
[26] 李文强. 并网逆变器改进迭代模型及稳定性分析[D]. 青岛: 山东科技大学, 2020.
LI W Q.Improved iterative model and stability analysis of grid-connected inverter[D]. Qingdao: Shandong University of Science and Technology, 2020.

基金

山东省自然科学基金(ZR2016EEM13); 国家电网有限公司总部科技项目(XTB17201800166):“基于多沙堆理论的互联电网停电事故预警技术及系统研发”; 国家电网有限公司总部科技项目(5100-202155482A-0-5-ZN):“基于总体国家安全观的大停电事件全链条演化机理与战略防御框架研究”

PDF(2471 KB)

Accesses

Citation

Detail

段落导航
相关文章

/