国槐废弃物固体燃料热压成型优化分析

杨原青, 孙乾坤, 简鸿亮, 辛佩宸, 乔昕丹, 张静

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 178-185.

PDF(2381 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2381 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 178-185. DOI: 10.19912/j.0254-0096.tynxb.2023-1475

国槐废弃物固体燃料热压成型优化分析

  • 杨原青1,2, 孙乾坤1, 简鸿亮1, 辛佩宸1, 乔昕丹1, 张静1,2
作者信息 +

OPTIMIZATION ANALYSIS OF HOT PRESSING FORMING PROCESS SOLID FUEL FROM Sophora japonica FOREST WASTE

  • Yang Yuanqing1,2, Sun Qiankun1, Jian Hongliang1, Xin Peichen1, Qiao Xindan1, Zhang Jing1,2
Author information +
文章历史 +

摘要

采用响应面法研究国槐废弃物生物质固体燃料密度、耐久性及抗跌碎性3个物理性能与成型温度、含水率及压强的关系,并应用满意度函数法对工艺参数进行三响应优化分析。结果表明:国槐固体燃料在温度50~130 ℃,含水率5%~13%,压强60~130 MPa范围内燃料密度、耐久性和抗跌碎性分别达到0.994 g/cm3、96.31%和99.41%以上,最佳燃料成型参数为温度84.40 ℃,含水率5.08%,压强129.76 MPa,在此成型参数下燃料密度、耐久性及抗跌碎性分别为1.075 g/cm3、99.06%及99.95%。

Abstract

Processing Sophora japonica waste into solid fuel can effectively promote the efficient utilization of resources. Response surface methodology(RSM) is used to study the relationship between three physical properties of the density, durability and impact resistance of the formed fuel and temperature, moisture content and pressure, and the desirability functions is used to carry out three response optimization analysis of process parameters. The results show that in the range of temperature 50-130 ℃, moisture content 5%-13% and pressure 60-130 MPa, the solid fuel density, durability and impact resistance reached more than 0.994 g/cm3, 96.31% and 99.41%, respectively. The optimum process parameter combination are temperature 84.40 ℃, moisture content 5.08% and pressure 129.76 MPa, and the fuel density, durability and impact resistance are 1.075 g/cm3, 99.06% and 99.95%, respectively.

关键词

生物质能 / 国槐 / 废弃物 / 燃料 / 满意度函数法 / 优化

Key words

biomass energy / Sophora japonica / waste / fuel / desirability functions / optimization

引用本文

导出引用
杨原青, 孙乾坤, 简鸿亮, 辛佩宸, 乔昕丹, 张静. 国槐废弃物固体燃料热压成型优化分析[J]. 太阳能学报. 2024, 45(3): 178-185 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1475
Yang Yuanqing, Sun Qiankun, Jian Hongliang, Xin Peichen, Qiao Xindan, Zhang Jing. OPTIMIZATION ANALYSIS OF HOT PRESSING FORMING PROCESS SOLID FUEL FROM Sophora japonica FOREST WASTE[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 178-185 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1475
中图分类号: S216.2   

参考文献

[1] 张得政, 张霞, 蔡宗寿, 等. 生物质能源的分类利用技术研究[J]. 安徽农业科学, 2016, 44(8): 81-83.
ZHANG D Z, ZHANG X, CAI Z S, et al.Research on classification and utilization technology of biomass energy[J]. Journal of Anhui agricultural sciences, 2016, 44(8): 81-83.
[2] SAIDUR R, ABDELAZIZ E A, DEMIRBAS A, et al.A review on biomass as a fuel for boilers[J]. Renewable and sustainable energy reviews, 2011, 15(5): 2262-2289.
[3] MADANAYAKE B N, GAN S Y, EASTWICK C, et al.Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques[J]. Fuel processing technology, 2017, 159: 287-305.
[4] (日)日本能源学会(编). 生物质和生物能源手册[M]. 史仲平, 华兆哲(译). 北京: 化学工业出版社, 2007.
The New Energy and Industrial Technology Development Organization(editor). Biomass handbook[M]. SHI Z P, HUA Z Z(translated). Beijing: Chemical Industry Press, 2007.
[5] 白阳, 闫文刚, 刘志刚. 生物质燃料致密成型方式的发展现状与展望[J]. 林业机械与木工设备, 2018, 46(9): 10-15.
BAI Y, YAN W G, LIU Z G.Development status and prospects of biomass briquette fuel dense molding method[J]. Forestry machinery & woodworking equipment, 2018, 46(9): 10-15.
[6] 李廉明, 俞燕, 薛军, 等. 秸秆燃料收储运模式的探索与实践[J]. 中国设备工程, 2017(5): 163-164.
LI L M, YU Y, XUE J, et al.Exploration and practice of straw fuel collection, storage and transportation mode[J]. China plant engineering, 2017(5): 163-164.
[7] LACOA U, VELARDE G, KAY M, et al.Design and development of logistics models for residential and commercial biomass pellets for heat and power generation in the US[J]. BioResources, 2017, 12(1): 1506-1531.
[8] CIOLKOSZ D, JACOBSON M, HEIL N, et al.An assessment of farm scale biomass pelleting in the Northeast[J]. Renewable energy, 2017, 108: 85-91.
[9] 霍丽丽, 田宜水, 孟海波, 等. 生物质固体成型燃料全生命周期评价[J]. 太阳能学报, 2011, 32(12): 1875-1880.
HUO L L, TIAN Y S, MENG H B, et al.Life cycle assessment analysis for densified biofuel[J]. Acta energiae solaris sinica, 2011, 32(12): 1875-1880.
[10] 徐嘉昱, 朱广阔, 高英, 等. 不同预处理温度对棉秆焦炭理化及成型燃烧特性的影响[J]. 太阳能学报, 2021, 42(4): 46-52.
XU J Y, ZHU G K, GAO Y, et al.Effect of temperature on characteristics and combustion behavior of cotton stalk biochar under different pretreatments[J]. Acta energiae solaris sinica, 2021, 42(4): 46-52.
[11] 邢献军, 范方宇, 施苏薇, 等. 玉米秸秆成型颗粒烘焙工艺优化及产品质量分析[J]. 过程工程学报, 2017, 17(3): 545-550.
XING X J, FAN F Y, SHI S W, et al.Technology optimization of corn straw pellets torrefaction and analysis of product quality[J]. The Chinese journal of process engineering, 2017, 17(3): 545-550.
[12] 张静, 郭玉明, 李晓斌. 柠条固体燃料压缩成型及物理特性的试验研究[J]. 山西农业大学学报(自然科学版), 2014, 34(1): 70-74.
ZHANG J, GUO Y M, LI X B.Study on the compression and physical properties of briquette made from Caragana korshinskii kom[J]. Journal of Shanxi Agricultural University (natural science edition), 2014, 34(1): 70-74.
[13] 张静, 郭玉明, 武翠卿, 等. 柠条热压成型工艺参数研究及燃料物性分析[J]. 太阳能学报, 2014, 35(10): 1842-1849.
ZHANG J, GUO Y M, WU C Q, et al.Study on process parameters of Caragana korshinskii kom hot briquetting and analysis of physical properties for the solid fuel briquette[J]. Acta energiae solaris sinica, 2014, 35(10): 1842-1849.
[14] 戴伟, 张静, 李彦平, 等. 基于满意度函数法的油松固体燃料工艺参数优化[J]. 太阳能学报, 2022, 43(2): 40-48.
DAI W, ZHANG J, LI Y P, et al.Optimization of solid fuel process parameters of pinus tabulaeformis based on desirability functions method[J]. Acta energiae solaris sinica, 2022, 43(2): 40-48.
[15] CARONE M T, PANTALEO A, PELLERANO A.Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L[J]. Biomass and bioenergy, 2011, 35(1): 402-410.
[16] BRIDGEMAN T G, JONES J M, SHIELD I, et al.Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties[J]. Fuel, 2008, 87(6): 844-856.
[17] ADAPA P, TABIL L, SCHOENAU G.Compaction characteristics of barley, canola, oat and wheat straw[J]. Biosystems engineering, 2009, 104(3): 335-344.
[18] 王茜. 秸秆成型燃料提质及清洁燃烧特性研究[D]. 济南: 山东大学, 2017.
WANG Q.Investigation on upgrading and clean combustion characteristics of straw briquettes[D]. Ji’nan: Shandong University, 2017.
[19] Solid biofuels-Methods for the determination of mechanical durability of pellets and briquettesPart 2: Briquettes: BS DD CEN/TS 15210-2[S]. BSI, 2006.
[20] ASTM D 440-86. Standard test method of drop shatter test for coal. Annual book of ASTM Standards, vol.05.05.West Conshohochen, PA:American Society for Testing and Materials 440-86. Standard test method of drop shatter test for coal. Annual book of ASTM Standards, vol.05.05.West Conshohochen, PA:American Society for Testing and Materials[S], 1998: 188-191.
[21] 钱晓亮, 张静, 郑德聪, 等. 基于渴求函数法的玉米秸秆炭与油松混合燃料工艺参数优化[J]. 太阳能学报, 2023, 44(4): 216-224.
QIAN X L, ZHANG J, ZHENG D C, et al.Optimization of technological parameters of mixed fuel of corn stover charcoal and pinus tabulaeformis based on desirability function method[J]. Acta energiae solaris sinica, 2023, 44(4): 216-224.
[22] 戴伟, 郑德聪, 张静, 等. 向日葵秸秆固体燃料成型参数多响应优化设计[J]. 太阳能学报, 2019, 40(10): 2780-2788.
DAI W, ZHENG D C, ZHANG J, et al.Multi-response optimum design of solid fuel forming parameters for sunflower straw[J]. Acta energiae solaris sinica, 2019, 40(10): 2780-2788.
[23] HARRINGTON J.The desirability function[J]. Industrial quality control, 1965, 21: 494-498.
[24] 何桢, 高雪峰, 崔庆安, 等. 基于三响应试验设计优化的满意度函数[J]. 系统工程, 2006, 24(7): 105-110.
HE Z, GAO X F, CUI Q A, et al.Desirability functions based on optimization of three response experimental design[J]. Systems engineering, 2006, 24(7): 105-110.
[25] 朱鹏飞. 基于满意度函数的多响应曲面稳健优化[D]. 天津: 天津大学, 2011.
ZHU P F.Robust optimization of multi-response surface problems using desirability function[D]. Tianjin: Tianjin University, 2011.

基金

国家燕麦荞麦产业体系重大专项(CARS-07-D-2); 吕梁市科技计划项目(农业领域重点研发)(2023NYYF08)

PDF(2381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/