PEMFC热管理系统的改进偏差型自抗扰控制

孙明, 邹浓茂, 白阳振, 徐文鑫

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 68-76.

PDF(1379 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1379 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 68-76. DOI: 10.19912/j.0254-0096.tynxb.2023-1482

PEMFC热管理系统的改进偏差型自抗扰控制

  • 孙明1, 邹浓茂1, 白阳振2, 徐文鑫1
作者信息 +

IMPROVED ERROR-BASED ACTIVE DISTURBANCE REJECTION CONTROL FOR THERMAL MANAGEMENT SYSTEM OF PEMFC

  • Sun Ming1, Zou Nongmao1, Bai Yangzhen2, Xu Wenxin1
Author information +
文章历史 +

摘要

该文建立带有循环水泵和散热器的电堆热管理系统动态数学模型,采用冷却水流量跟随电流、风扇控制电堆温度的前馈-反馈复合控制策略。通过提取部分确定性模型信息对一阶偏差型自抗扰控制算法进行改进,以提高热管理系统的温度控制品质。仿真实验结果表明:所提出的改进ADRC控制算法可有效解决PEMFC热管理系统中存在的强耦合、多扰动的控制难题,相较于传统的PI控制算法,闭环控制系统的主要单项性能指标,即超调量下降了43.7%,调节时间缩短了20.2%,总体体现了系统良好的抗干扰性能和鲁棒性能,能达到预期控制效果。

Abstract

This study introduces a dynamic mathematical model for the thermal management system of the stack, incorporating a circulating water pump and radiator. The control strategy integrates feedforward and feedback mechanisms, focusing on regulating cooling water flow based on current and utilizing a fan to control stack temperature. An innovative approach is applied to enhance the first-order deviation active disturbance rejection control algorithm. This involves extracting deterministic model information to elevate the temperature control precision within the thermal management system. Simulation results demonstrate that the effectiveness of the proposed improved ADRC control algorithm in addressing challenges related to strong coupling and multiple disturbances inherent in PEMFC thermal management systems. Comparative analysis against a conventional proportional-integral control algorithm reveals significant improvements in the closed-loop control system. Specifically, the enhanced ADRC algorithm achieves a 43.7% reduction in overshoot and a 20.2% decrease in adjustment time. These results underscore the system's robustness and anti-interference capabilities, affirming its ability to attain the desired control outcomes.

关键词

质子交换膜燃料电池 / 热管理 / 模型 / 自抗扰控制 / 温度控制

Key words

proton exchange membrane fuel cell / thermal management / models / active disturbance rejection control / temperature control

引用本文

导出引用
孙明, 邹浓茂, 白阳振, 徐文鑫. PEMFC热管理系统的改进偏差型自抗扰控制[J]. 太阳能学报. 2024, 45(10): 68-76 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1482
Sun Ming, Zou Nongmao, Bai Yangzhen, Xu Wenxin. IMPROVED ERROR-BASED ACTIVE DISTURBANCE REJECTION CONTROL FOR THERMAL MANAGEMENT SYSTEM OF PEMFC[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 68-76 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1482
中图分类号: TM911.42   

参考文献

[1] SAYGILI Y, EROGLU I, KINCAL S.Model based temperature controller development for water cooled PEM fuel cell systems[J]. International journal of hydrogen energy, 2015, 40(1): 615-622.
[2] 胡鹏, 曹广益, 朱新坚. 质子交换膜燃料电池温度模型与模糊控制[J]. 控制理论与应用, 2011, 28(10): 1371-1376.
HU P, CAO G Y, ZHU X J.Temperature model and fuzzy control for the proton-exchange-membrane fuel cell[J]. Control theory & applications, 2011, 28(10): 1371-1376.
[3] 赵洪波, 刘杰, 马彪, 等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
ZHAO H B, LIU J, MA B, et al.Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC journal, 2020, 71(5): 2139-2150.
[4] LISO V, NIELSEN M P, KÆR S K, et al. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications[J]. International journal of hydrogen energy, 2014, 39(16): 8410-8420.
[5] 裴尧旺, 陈凤祥, 胡哲, 等. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
PEI Y W, CHEN F X, HU Z, et al.Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(9): 2014-2024.
[6] 周苏, 高昆鹏, 支雪磊. 一种改进的质子交换膜燃料电池系统动态模型[J]. 同济大学学报(自然科学版), 2015, 43(6): 882-887.
ZHOU S, GAO K P, ZHI X L.An improved dynamic model for proton exchange membrane fuel cell systems[J]. Journal of Tongji University (natural science), 2015, 43(6): 882-887.
[7] SUN L, JIN Y H, YOU F Q.Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell[J]. Applied energy, 2020, 261: 114381.
[8] SUN L, LI G R, HUA Q S, et al.A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control[J]. Renewable energy, 2020, 147: 1642-1652.
[9] LI D Z, LI C, GAO Z Q, et al.On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells[J]. Journal of power sources, 2015, 283: 452-463.
[10] SUN L, SHEN J, HUA Q S, et al.Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied energy, 2018, 231: 866-875.
[11] WANG Y X, CHEN Q, OU K, et al.Time delay thermal control of a compact proton exchange membrane fuel cell against disturbances and noisy measurements[J]. Energy conversion and management, 2021, 244: 114444.
[12] CHEN Q, CHEN J Z, WANG Y X.Open cathode type of fuel cell stack temperature regulation by active disturbance rejection control[C]//2020 Chinese Automation Congress (CAC). Shanghai, China, 2020: 3435-3440.
[13] 王星, 孙俊, 陈宁芳, 等. 基于Simscape的质子交换膜燃料电池冷却系统建模与温度控制策略[J]. 储能科学与技术, 2023, 12(3): 857-869.
WANG X, SUN J, CHEN N F, et al.Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy[J]. Energy storage science and technology, 2023, 12(3): 857-869.
[14] KLER D, RANA K P S, KUMAR V. Parameter extraction of fuel cells using hybrid interior search algorithm[J]. International journal of energy research, 2019, 43(7): 2854-2880.
[15] 夏国栋, 张晓亚, 马丹丹, 等. 质子交换膜燃料电池参数敏感性分析[J]. 太阳能学报, 2022, 43(6): 493-499.
XIA G D, ZHANG X Y, MA D D, et al.Parameter sensitivity analysis of proton exchange membrane fuel cell[J]. Acta energiae solaris sinica, 2022, 43(6): 493-499.
[16] 赵安. 质子交换膜燃料电池热管理系统动态建模与控制策略研究[D]. 成都: 电子科技大学, 2022.
ZHAO A.Study on dynamic modeling and control strategy of thermal management system for proton exchange membrane fuel cell[D].Chengdu: University of Electronic Science and Technology of China, 2022.
[17] 牛茁. 水冷型质子交换膜燃料电池热管理系统控制研究[D]. 成都: 西南交通大学, 2018.
NIU Z.Study on control of thermal management system of water-cooled proton exchange membrane fuel cell[D].Chengdu: Southwest Jiaotong University, 2018.
[18] 彭书浩. 质子交换膜燃料电池热管理系统控制策略研究[D]. 杭州: 浙江大学, 2022.
PENG S H.Study on control strategy of thermal management system for proton exchange membrane fuel cell[D]. Hangzhou: Zhejiang University, 2022.
[19] MADONSKI R, SHAO S, ZHANG H, et al.General error-based active disturbance rejection control for swift industrial implementations[J]. Control engineering practice, 2019, 84(3): 218-229.
[20] MADONSKI R, HERBST G, STANKOVIC M.ADRC in output and error form: connection, equivalence, performance[J]. Control theory and technology, 2023, 21(1): 56-71.
[21] HOU G, KE Y, HUANG C.A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe[J]. Energy, 2021(9): 121646.
[22] 陈际, 袁守利, 刘志恩. 基于BAS改进PSO算法对PEMFC温度的控制[J]. 太阳能学报, 2023, 44(5): 67-73.
CHEN J, YUAN S L, LIU Z E.Temperature control of PEMFC based on bas improved PSO algorithm[J]. Acta energiae solaris sinica, 2023, 44(5): 67-73.
[23] SKOGESTAD S.Simple analytic rules for model reduction and PID controller tuning[J]. Journal of process control, 2003, 13(4): 291-309.
[24] ZHANG Y Q, LI D H, GAO Z Q, et al.On oscillation reduction in feedback control for processes with an uncertain dead time and internal-external disturbances[J]. ISA transactions, 2015, 59: 29-38.

基金

河北省省级科技计划(22567643H); 河北省自然科学基金(E2018502111)

PDF(1379 KB)

Accesses

Citation

Detail

段落导航
相关文章

/