全生命期视角下的可再生能源技术隐含碳研究

罗晓予, 宋志茜, 曹星煜, 葛坚

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 514-521.

PDF(1251 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1251 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 514-521. DOI: 10.19912/j.0254-0096.tynxb.2023-1483

全生命期视角下的可再生能源技术隐含碳研究

  • 罗晓予1,2, 宋志茜1, 曹星煜1, 葛坚1,2
作者信息 +

RESEARCH ON IMPLIED CARBON OF RENEWABLE ENERGY TECHNOLOGIES FROM PERSPECTIVE OF WHOLE LIFE CYCLE

  • Luo Xiaoyu1,2, Song Zhiqian1, Cao Xingyu1, Ge Jian1,2
Author information +
文章历史 +

摘要

通过文献整理与数据计算,总结太阳能、风能、地热能、空气能利用等可再生能源技术的隐含碳,并通过单位节能量碳排放、单位节能量成本增量两个指标对常见可再生能源技术开展评价。

Abstract

Through literature review and data calculation, this study summarizes the implied carbon of renewable energy technologies such as solar energy, wind energy, geothermal energy, and air energy utilization, and evaluates common renewable energy technologies through two indicators of carbon emissions per unit of energy savings and cost increment per unit of energy savings.

关键词

可再生能源 / 节能 / 碳足迹 / 成本效益 / 能源利用 / 能量耗散

Key words

renewable energy / energy conservation / carbon footprint / cost effectiveness / energy utilization / energy dissipation

引用本文

导出引用
罗晓予, 宋志茜, 曹星煜, 葛坚. 全生命期视角下的可再生能源技术隐含碳研究[J]. 太阳能学报. 2025, 46(1): 514-521 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1483
Luo Xiaoyu, Song Zhiqian, Cao Xingyu, Ge Jian. RESEARCH ON IMPLIED CARBON OF RENEWABLE ENERGY TECHNOLOGIES FROM PERSPECTIVE OF WHOLE LIFE CYCLE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 514-521 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1483
中图分类号: TK51   

参考文献

[1] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(003).
XI J P. The speech at the 75th UN General Assembly General Debate[N]. People's Daily, 2020-09-23(003).
[2] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Y, HU S.Paths to carbon neutrality in China's building sector[J]. Heating ventilating & air conditioning, 2021, 51(5): 1-13.
[3] YANG Z, CHEN H, MI L, et al.Green building technologies adoption process in China: how environmental policies are reshaping the decision-making among alliance-based construction enterprises?[J]. Sustainable Cities and Society, 2021, 73: 103122.
[4] 罗智星. 建筑生命周期二氧化碳排放计算方法与减排策略研究[D]. 西安: 西安建筑科技大学, 2016.
LUO Z X.Study on calculation method and emission reduction strategy of carbon dioxide emission in building life cycle[D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
[5] CHASTAS P, THEODOSIOU T, KONTOLEON K J, et al.Normalising and assessing carbon emissions in the building sector: a review on the embodied CO2 emissions of residential buildings[J]. Building and environment, 2018, 130: 212-226.
[6] GAN V J L, DENG M, TSE K T, et al. Holistic BIM framework for sustainable low carbon design of high-rise buildings[J]. Journal of cleaner production, 2018, 195: 1091-1104.
[7] 翁琳, 陈剑波. 光伏系统基于全生命周期碳排放量计算的环境与经济效益分析[J]. 上海理工大学学报, 2017, 39(3): 282-288.
WENG L, CHEN J B.Environmental and economic analysis on the carbon dioxide emissions calculation in the life cycle of a photovoltaic system[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(3): 282-288.
[8] LIU F, VAN DEN BERGH J C J M. Differences in CO2 emissions of solar PV production among technologies and regions: application to China, EU and USA[J]. Energy policy, 2020, 138: 111234.
[9] PANDEY A K, ALI LAGHARI I, REJI KUMAR R, et al.Energy, exergy, exergoeconomic and enviroeconomic (4-E) assessment of solar water heater with/without phase change material for building and other applications: a comprehensive review[J]. Sustainable energy technologies and assessments, 2021, 45: 101139.
[10] SOLEYMANI P, SAEDODIN S, HADI ROSTAMIAN S, et al.Experimental investigation of a hybridized flat-plate solar collector/gas burner for low-carbon production of hot water-analysis of energy, exergy, and GHG emissions[J]. Sustainable energy technologies and assessments, 2023, 55: 102918.
[11] DARULA S, MOHELNÍKOVÁ J, KRÁL J. Daylight in buildings based on tubular light guides[J]. Journal of building engineering, 2021, 44: 102608.
[12] AMPONSAH N Y, TROLDBORG M, KINGTON B, et al.Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations[J]. Renewable and sustainable energy reviews, 2014, 39: 461-475.
[13] GREENING B, AZAPAGIC A.Domestic heat pumps: life cycle environmental impacts and potential implications for the UK[J]. Energy, 2012, 39(1): 205-217.
[14] VIOLANTE A C, DONATO F, GUIDI G, et al.Comparative life cycle assessment of the ground source heat pump vs air source heat pump[J]. Renewable energy, 2022, 188: 1029-1037.
[15] CARNEIRO A L, MARTINS A A, DUARTE V C M, et al. Energy consumption and carbon footprint of perovskite solar cells[J]. Energy reports, 2022, 8: 475-481.
[16] PENG J Q, LU L, YANG H X.Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems[J]. Renewable and sustainable energy reviews, 2013, 19: 255-274.
[17] GB/T 51366—2019, 建筑碳排放计算标准[S].
GB/T 51366—2019, Standard for building carbon emission calculation[S].
[18] RAMAMURTHY RAO H K, GEMECHU E, THAKUR U, et al. Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells[J]. Solar energy materials and solar cells, 2021, 230: 111288.
[19] GE J, SHEN C, ZHAO K, et al.Energy production features of rooftop hybrid photovoltaic-wind system and matching analysis with building energy use[J]. Energy conversion and management, 2022, 258: 115485.
[20] 陈月冬. 中国不同类型家用热水器生命周期评价[D]. 济南: 山东大学, 2019.
CHEN Y D.Life cycle assessment of different types of domestic water heaters in China[D]. Ji'nan: Shandong University, 2019.
[21] MA T, JAVED M S.Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource[J]. Energy conversion and management, 2019, 182: 178-190.
[22] MALEKI A, KHAJEH M G, AMERI M.Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty[J]. International journal of electrical power & energy systems, 2016, 83: 514-524.
[23] 李兴盛, 胡向然, 郑淞生, 等. 基于多晶硅金刚线切割工艺的光伏生命周期分析[J]. 太阳能学报, 2022, 43(3): 147-151.
LI X S, HU X R, ZHENG S S, et al.Life cycle analysis of photovoltaic based on diamond wire saw process[J]. Acta energiae solaris sinica, 2022, 43(3): 147-151.
[24] 刘臣辉, 詹晓燕, 范海燕, 等. 多晶硅-光伏系统碳排放环节分析[J]. 太阳能学报, 2012, 33(7): 1158-1163.
LIU C H, ZHAN X Y, FAN H Y, et al.Analysis of carbon emision links on polycrystalline-silicon PV system[J]. Acta energiae solaris sinica, 2012, 33(7): 1158-1163.
[25] ITO M, KOMOTO K, KUROKAWA K.Life-cycle analyses of very-large scale PV systems using six types of PV modules[J]. Current applied physics, 2010, 10(2): S271-S273.
[26] KIM H, CHA K, FTHENAKIS V M, et al.Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems[J]. Solar energy, 2014, 103: 78-88.
[27] 李克琳. 太阳能热水系统的全生命周期环境影响评价[D]. 北京: 清华大学, 2015.
LI K L.Life cycle environmental impact assessment of solar water heating system[D]. Beijing: Tsinghua University, 2015.
[28] 廖智强. 基于绿色设计的海岛小型风力发电机全生命周期评价研究与绿色效益优化[D]. 桂林: 桂林电子科技大学, 2020.
LIAO Z Q.Research on life cycle assessment and green benefit optimization of island small wind turbine based on green design[D]. Guilin: Guilin University of Electronic Technology, 2020.
[29] WANG W C, TEAH H Y.Life cycle assessment of small-scale horizontal axis wind turbines in Taiwan,China[J]. Journal of cleaner production, 2017, 141: 492-501.
[30] 许晓雷. 太阳能-地源热泵系统的全寿命周期成本分析[D]. 天津: 河北工业大学, 2015.
XU X L.Life cycle cost analysis of solar energy-ground source heat pump system[D]. Tianjin: Hebei University of Technology, 2015.
[31] 徐向宇, 徐政, 李光明. 光伏空气源热泵的研究与开发[J]. 太阳能学报, 2022, 43(1): 356-361.
XU X Y, XU Z, LI G M.Research and development of photovoltaic air source heat pump systems[J]. Acta energiae solaris sinica, 2022, 43(1): 356-361.
[32] NAUMANN G, SCHROPP E, GADERER M.Life cycle assessment of an air-source heat pump and a condensing gas boiler using an attributional and a consequential approach[J]. Procedia cirp, 2022, 105: 351-356.
[33] LIU W, CHEN C, WU H J, et al.Environmental life cycle assessment and techno-economic analysis of domestic hot water systems in China[J]. Energy conversion and management, 2019, 199: 111943.
[34] SAOUD A, HARAJLI H, MANNEH R.Cradle-to-grave life cycle assessment of an air to water heat pump: case study for the Lebanese context and comparison with solar and conventional electric water heaters for residential application[J]. Journal of building engineering, 2021, 44: 103253.
[35] 雷舒尧, 李楠, 李舒宏, 等. 不同太阳能热水系统的全生命周期环境影响和能源效益分析[J]. 太阳能学报, 2018, 39(4): 957-964.
LEI S Y, LI N, LI S H, et al.Life-cycle environmental impact and energy efficiency analysis of different solar hot water systems[J]. Acta energiae solaris sinica, 2018, 39(4): 957-964.
[36] WANG Y X, SUN T Y.Life cycle assessment of CO2 emissions from wind power plants: methodology and case studies[J]. Renewable energy, 2012, 43: 30-36.
[37] GUEZURAGA B, ZAUNER R, PÖLZ W. Life cycle assessment of two different 2 MW class wind turbines[J]. Renewable energy, 2012, 37(1): 37-44.
[38] 胡玉坤, 沈致和, 慈超. 地源热泵空调系统生命周期碳排放研究[J]. 制冷与空调(四川), 2017, 31(2): 140-144.
HU Y K, SHEN Z H, CI C.Carbon emissions research in life cycle of ground source heat air conditioning system[J]. Refrigeration & air conditioning, 2017, 31(2): 140-144.
[39] 杨从辉, 袁艳平, 雷波, 等. 基于生命周期的土壤源热泵系统CO2减排效果评价[J]. 建筑热能通风空调, 2011, 30(1): 23-26.
YANG C H, YUAN Y P, LEI B, et al.Evaluation of CO2 reductions soil source heat pump system based on life cycle[J]. Building energy & environment, 2011, 30(1): 23-26.
[40] JOHNSON E P.Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources[J]. Energy policy, 2011, 39(3): 1369-1381.

基金

浙江省“尖兵”“领雁”研发攻关计划(2023C03173); 浙江省自然科学基金(LY21E080024)

PDF(1251 KB)

Accesses

Citation

Detail

段落导航
相关文章

/