SOEC多模绿电制氢集成系统协调控制方法研究

赫亚庆, 王维庆, 张新燕, 李佳蓉, 赵晨欢, 王海云

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 363-372.

PDF(1428 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1428 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 363-372. DOI: 10.19912/j.0254-0096.tynxb.2023-1484

SOEC多模绿电制氢集成系统协调控制方法研究

  • 赫亚庆1, 王维庆1, 张新燕1, 李佳蓉2, 赵晨欢3, 王海云1
作者信息 +

RESEARCH ON COORDINATED CONTROL METHOD FOR SOEC MULTI-MODE GREEN ELECTRICITY HYDROGEN PRODUCTION INTEGRATED SYSTEM

  • He Yaqing1, Wang Weiqing1, Zhang Xinyan1, Li Jiarong2, Zhao Chenhuan3, Wang Haiyun1
Author information +
文章历史 +

摘要

针对高温固体氧化物电解槽(SOEC)制氢能量转换效率、反应速率显著等特点,首先搭建多模绿氢集成运行模型,分析模型启停及制氢特性,并对其进行经济约束、运行约束。其次考虑风光的随机、间歇性因素及模块非线性特性,提出一种各模块独立受控和满足负荷要求的鲁棒可调协同优化方法。建立风光不确定集,将模块分段线性化,并引入鲁棒可调协同优化方法,以此来提高系统的产氢效率、运行灵活度和总经济效益。最后,在满足负荷分配工作的基础上对5个集成模块进行灵活启停运行算例分析,并将25个集成模块接入配电网参与到电网调度中。结果表明,在变负荷运行情况下,合理的组合模型不仅能优化系统启停运行的灵活性与稳定性,而且能提高新能源的消纳与并网友好性,具有明显的经济效益和战略意义。

Abstract

In view of the characteristics of high temperature solid oxide electrolyzer cell (SOEC) hydrogen production,such as energy conversion efficiency,remarkable reaction rate etc., firstly a multi-mode green hydrogen integrated operation model is built to analyze the model's start-stop and hydrogen production characteristics,while economic and operational constraints is imposed on it. Secondly,considering the random and intermittent factors of wind and solar power, as well as the nonlinear characteristics of modules,a robust and adjustable collaborative optimization method is proposed that independently controls each module and meets the load requirements. By establishing the wind and solar uncertainty set,the piecewise linearization of the modules,and introducing a robust and adjustable collaborative optimization method, the hydrogen production efficiency,operational flexibility,and overall economic benefits of the system were improved. Lastly, a flexible start-stop operation example analysis was conducted on 5 integrated modules on the basis of meeting the load distribution work,and 25 integrated modules were connected to the distribution network to participate in power grid scheduling. The results show that a reasonable combination model can not only optimize the flexibility and stability of the system's start-stop operation under variable load operation conditions. Moreover, it can improve the consumption of new energy and the adaptability in grid-connection,which has obvious economic efficiency and strategic significance.

关键词

固体氧化物电解槽 / 制氢 / 优化方法 / 集成模块 / 消纳 / 经济效益

Key words

solid oxide electrolysis cell(SOEC) / hydrogen production / optimization / integrated modules / consumption / economic efficiency

引用本文

导出引用
赫亚庆, 王维庆, 张新燕, 李佳蓉, 赵晨欢, 王海云. SOEC多模绿电制氢集成系统协调控制方法研究[J]. 太阳能学报. 2025, 46(1): 363-372 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1484
He Yaqing, Wang Weiqing, Zhang Xinyan, Li Jiarong, Zhao Chenhuan, Wang Haiyun. RESEARCH ON COORDINATED CONTROL METHOD FOR SOEC MULTI-MODE GREEN ELECTRICITY HYDROGEN PRODUCTION INTEGRATED SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 363-372 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1484
中图分类号: TM911   

参考文献

[1] 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391.
MU S J, LIN J, XING X T, et al.Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power system technology, 2017, 41(10): 3385-3391.
[2] 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496.
ZHENG B, BAI Z, YUAN Y, et al.Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496.
[3] 韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169.
HAN Z J, NA G Y, DONG H N, et al.Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power system protection and control, 2023, 51(6): 161-169.
[4] 袁铁江, 谭捷, 万志. 考虑下游氢负荷波动的新能源制氢系统协调控制策略[J]. 电力系统自动化, 2023, 47(6): 150-157.
YUAN T J, TAN J, WAN Z.Coordinated control strategy of hydrogen producing system powered by renewable energy considering downstream hydrogen load fluctuations[J]. Automation of electric power systems, 2023, 47(6): 150-157.
[5] 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033.
LI J R, LIN J, XING X T, et al.Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033.
[6] 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109.
YUAN T J, WAN Z, WANG J J, et al.The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric power, 2022, 55(1): 101-109.
[7] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472.
SHEN X J, NIE C Y, LYU H.Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472.
[8] 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516.
XIONG Y F, SI Y, ZHENG T W, et al.Optimal configuration of hydrogen storage in industrial park integrated energy system based on Stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 507-516.
[9] 李鹏, 韩建沛, 殷云星, 等. 电转氢作为灵活性资源的微网容量多目标优化配置[J]. 电力系统自动化, 2019, 43(17): 28-35, 139.
LI P, HAN J P, YIN Y X, et al.Multi-objective optimal capacity configuration of microgrid with power to hydrogen as flexible resource[J]. Automation of electric power systems, 2019, 43(17): 28-35, 139.
[10] PAN G S, GU W, LU Y P, et al.Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2662-2676.
[11] FRANK E, GORRE J, RUOSS F, et al.Calculation and analysis of efficiencies and annual performances of power-to-gas systems[J]. Applied energy, 2018, 218: 217-231.
[12] DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al.Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach[J]. International journal of hydrogen energy, 2020, 45(43): 22394-22407.
[13] LASIA A.Mechanism and kinetics of the hydrogen evolution reaction[J]. International journal of hydrogen energy, 2019, 44(36): 19484-19518.
[14] CHI Y T, QIU Y W, LIN J, et al.A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method[J]. International journal of hydrogen energy, 2020, 45(58): 32949-32971.
[15] 郝文斌, 曾鹏, 谢波, 等. 基于博弈论的含氢能配电网系统优化重构研究[J]. 太阳能学报, 2023, 44(8): 77-84.
HAO W B, ZENG P, XIE B, et al.Game theory-based optimal reconfiguration for distribution network system with hydrogen energy[J]. Acta energiae solaris sinica, 2023, 44(8): 77-84.
[16] 高超, 姚秀萍, 刘日新, 等. 基于自适应控制的风光制储氢协调运行策略研究[J]. 太阳能学报, 2023, 44(8): 102-109.
GAO C, YAO X P, LIU R X, et al.Research on coordinated operation strategy of wind-solar hydrogen production and storage based on adaptive control[J]. Acta energiae solaris sinica, 2023, 44(8): 102-109.
[17] 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11.
JI X, ZHOU B X, HE G, et al.Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced engineering sciences, 2022, 54(5): 1-11.
[18] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[19] FANG R M.Multi-objective optimized operation of integrated energy system with hydrogen storage[J]. International journal of hydrogen energy, 2019, 44(56): 29409-29417.
[20] XING X T, LIN J, WAN C, et al.Model predictive control of LPC-looped active distribution network with high penetration of distributed generation[J]. IEEE transactions on sustainable energy, 2017, 8(3): 1051-1063.
[21] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[22] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[23] XING X T, LIN J, SONG Y H, et al.Intermodule management within a large-capacity high-temperature power-to-hydrogen plant[J]. IEEE transactions on energy conversion, 2020, 35(3): 1432-1442.
[24] 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312.
XING X T, LIN J, SONG Y H, et al.Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of global energy interconnection, 2018, 1(3): 303-312.
[25] 杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47(12): 76-85.
YANG Z J, TIAN X Q, WU W L, et al.Optimal capacity configuration of wind-hydrogen-HCNG coupled network considering combined electrolyzer operation[J]. Automation of electric power systems, 2023, 47(12): 76-85.
[26] FU C, LIN J, SONG Y H, et al.Optimal operation of an integrated energy system incorporated with HCNG distribution networks[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2141-2151.

基金

新疆维吾尔自治区自然科学基金(2021D01C044); 国家自然科学基金(52267005; 52067020)

PDF(1428 KB)

Accesses

Citation

Detail

段落导航
相关文章

/