甲烷混合燃料气内重整反应对平板式固体氧化物燃料电池性能影响

宋明, 仝佳佳, 蒋文春, 钮瑞艳, 胡佳旺, 陈子豪

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 373-382.

PDF(2121 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2121 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 373-382. DOI: 10.19912/j.0254-0096.tynxb.2023-1485

甲烷混合燃料气内重整反应对平板式固体氧化物燃料电池性能影响

  • 宋明1, 仝佳佳1, 蒋文春2, 钮瑞艳1, 胡佳旺1, 陈子豪1
作者信息 +

EFFECT OF INTERNAL REFORMING REACTION OF METHANE MIXED FUEL GAS ON PERFORMANCE OF PLANAR SOLID OXIDE FUEL CELLS

  • Song Ming1, Tong Jiajia1, Jiang Wenchun2, Niu Ruiyan1, Hu Jiawang1, Chen Zihao1
Author information +
文章历史 +

摘要

为研究经过预重整的含甲烷混合燃料气中甲烷浓度及内部重整对平板式固体氧化物燃料电池电化学性能和热机械性能的影响,建立甲烷内重整平板式固体氧化物燃料电池模型,并对多孔材料的弹性模量及泊松比进行修正,对比3种不同甲烷浓度条件下电池的综合性能。结果表明:在电化学性能方面,随着混合燃料气中甲烷浓度的增大,电池电流密度和功率密度逐渐增大,流道中甲烷的摩尔浓度沿燃料流动方向逐渐减小,氢气浓度沿流动方向呈先增大后减小的趋势,氢气的最大浓度逐渐远离燃料入口;热机械性能方面,随着混合燃料气中甲烷浓度的增大,位于金属连接体上的电池最大第一主应力和位于燃料出口的电池最大温度逐渐降低。适当提高混合燃料气中甲烷的浓度有利于平板式固体氧化物燃料电池的综合性能优化。

Abstract

In order to investigate the effects of methane concentration in pre-reformed methane-containing fuel gas and internal reforming on the electrochemical and thermomechanical performance of planar solid oxide fuel cells (SOFCs), a methane internal reforming planar SOFC model was established, and the elastic modulus and Poisson's ratio of the porous material were corrected. The comprehensive performance of the cells was compared under three different methane concentration conditions. The results indicate that, in terms of electrochemical performance, with the increase of methane concentration in the mixed fuel gas, the cell current density and power density gradually increase. The molar concentration of methane in the flow channel decreases along the direction of fuel flow, and the hydrogen concentration shows an increasing trend followed by a decrease along the flow direction, with the maximum hydrogen concentration gradually moving away from the fuel inlet. In terms of thermomechanical performance, as the methane concentration in the mixed fuel gas increases, the maximum first principal stress of the SOFC located on the metal interconnector and the maximum temperature at the fuel outlet decrease gradually. Increasing the methane concentration in the mixed fuel gas appropriately is advantageous for enhancing the overall performance of planar SOFCs.

关键词

固体氧化物燃料电池 / 重整反应 / 多物理场 / 电化学性能 / 热机械性能

Key words

solid oxide fuel cells / reforming reactions / multiphysics / electrochemical performance / thermomechanical performance

引用本文

导出引用
宋明, 仝佳佳, 蒋文春, 钮瑞艳, 胡佳旺, 陈子豪. 甲烷混合燃料气内重整反应对平板式固体氧化物燃料电池性能影响[J]. 太阳能学报. 2025, 46(1): 373-382 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1485
Song Ming, Tong Jiajia, Jiang Wenchun, Niu Ruiyan, Hu Jiawang, Chen Zihao. EFFECT OF INTERNAL REFORMING REACTION OF METHANE MIXED FUEL GAS ON PERFORMANCE OF PLANAR SOLID OXIDE FUEL CELLS[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 373-382 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1485
中图分类号: TM911.42   

参考文献

[1] 常贵可, 张金磊, 郑春花, 等. 国内固体氧化物燃料电池研究现状与展望[J]. 广州化工, 2019, 47(17): 14-16.
CHANG G K, ZHANG J L, ZHENG C H, et al.Research status and prospects of domestic solid oxide fuel cells[J]. Guangzhou chemical industry, 2019, 47(17): 14-16.
[2] JIANG W C, TU S T, LI G C, et al.Residual stress and plastic strain analysis in the brazed joint of bonded compliant seal design in planar solid oxide fuel cell[J]. Journal of power sources, 2010, 195(11): 3513-3522.
[3] 闫飞, 董润泽, 杨浦, 等. 甲烷为燃料的固体氧化物燃料电池钙钛矿基阳极的研究进展[J]. 化工新型材料, 2022, 50(6): 71-74.
YAN F, DONG R Z, YANG P, et al.Research progress on perovskite based anode for methane fuel SOFC[J]. New chemical materials, 2022, 50(6): 71-74.
[4] SOHN S, BAEK S M, NAM J H, et al.Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane[J]. International journal of hydrogen energy, 2016, 41(12): 5582-5597.
[5] ARPORNWICHANOP A, PATCHARAVORACHOT Y, ASSABUMRUNGRAT S.Analysis of a proton-conducting SOFC with direct internal reforming[J]. Chemical engineering science, 2010, 65(1): 581-589.
[6] LIESE E A, GEMMEN R S.Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system[J]. Journal of engineering for gas turbines and power, 2005, 127(1): 86-90.
[7] 宋明, 王文慧, 杜传胜, 等. 平板式固体氧化物燃料电池的热机械行为[J]. 硅酸盐学报, 2021, 49(3): 476-482.
SONG M, WANG W H, DU C S, et al.Thermomechanical behavior of planar solid oxide fuel cell[J]. Journal of the Chinese Ceramic Society, 2021, 49(3): 476-482.
[8] 宋明, 马帅, 杜传胜, 等. 多物理场耦合作用下平板式固体氧化物燃料电池的蠕变损伤行为[J]. 硅酸盐学报, 2022, 50(1): 212-218.
SONG M, MA S, DU C S, et al.Damage and creep behavior in planar solid oxide fuel cell by modeling of multiphysics coupled[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 212-218.
[9] DANG Z, SHEN X, MA J Y, et al.Multiphysics coupling simulation and parameter study of planar solid oxide fuel cell[J]. Frontiers in chemistry, 2021, 8: 609338.
[10] 韩丽, 鲁盼盼, 王晓静, 等. 考虑氢燃料电池响应延迟特性的电网日内优化调度[J]. 太阳能学报, 2022, 43(6): 373-381.
HAN L, LU P P, WANG X J, et al.Intraday optimal dispatch of power grid considering response delay characteristics of hydrogen fule cells[J]. Acta energiae solaris sinica, 2022, 43(6): 373-381.
[11] 张鹏, 李佳烨, 潘原. 单原子催化剂在氢燃料电池阴极氧还原反应中的研究进展[J]. 太阳能学报, 2022, 43(6): 306-320.
ZHANG P, LI J Y, PAN Y.Progress of single atom catalysts in cathodic oxygen reduction for reaction hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(6): 306-320.
[12] 赵金国, 郭恒. 氢燃料电池氢气利用率提升策略研究[J]. 太阳能学报, 2022, 43(8): 510-516.
ZHAO J G, GUO H.Research on hydrogen utilization rate enhancement strategy of hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(8): 510-516.
[13] 杨国刚, 吕欣荣, 岳丹婷, 等. SOFC内部重整反应与电化学反应耦合机理[J]. 化工学报, 2008, 59(4): 1008-1015.
YANG G G, LYU X R, YUE D T, et al.Coupling mechanism of internal reforming and electrochemical reaction in SOFC[J]. Journal of chemical industry and engineering(China), 2008, 59(4): 1008-1015.
[14] BARZI Y M, RAOUFI A, LARI H.Performance analysis of a SOFC button cell using a CFD model[J]. International journal of hydrogen energy, 2010, 35(17): 9468-9478.
[15] WANG B X, ZHU J, LIN Z J.A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics[J]. Applied energy, 2016, 176: 1-11.
[16] 谢静, 徐明益, 班帅, 等. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226.
XIE J, XU M Y, BAN S, et al.Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming[J]. CIESC journal, 2019, 70(1): 214-226.
[17] CHATRATTANAWET N, SAEBEA D, AUTHAYANUN S, et al.Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches[J]. Energy, 2018, 146: 131-140.
[18] 宋明, 王文慧, 杜传胜, 等. 平板式固体氧化物燃料电池多物理场耦合建模[J]. 工程热物理学报, 2021, 42(9): 2401-2408.
SONG M, WANG W H, DU C S, et al.Multiphysics coupled modeling of planar solid oxide fuel cell[J]. Journal of engineering thermophysics, 2021, 42(9): 2401-2408.
[19] LISO V, CINTI G, NIELSEN M P, et al.Solid oxide fuel cell performance comparison fueled by methane, MeOH, EtOH and gasoline surrogate C8H18[J]. Applied thermal engineering, 2016, 99: 1101-1109.
[20] NERAT M, JURIČIĆ Đ. A comprehensive 3-D modeling of a single planar solid oxide fuel cell[J]. International journal of hydrogen energy, 2016, 41(5): 3613-3627.
[21] GUO M T, XIAO G P, WANG J Q, et al.Parametric study of kW-class solid oxide fuel cell stacks fueled by hydrogen and methane with fully multiphysical coupling model[J]. International journal of hydrogen energy, 2021, 46(14): 9488-9502.
[22] HABERMAN B A, YOUNG J B.Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell[J]. International journal of heat and mass transfer, 2004, 47(17-18): 3617-3629.
[23] CHAUDHARY T N, SALEEM U, CHEN B X.Reacting flow coupling with thermal impacts in a single solid oxide fuel cell[J]. International journal of hydrogen energy, 2019, 44(16): 8425-8438.
[24] RAMAKRISHNAN N, ARUNACHALAM V S.Effective elastic moduli of porous solids[J]. Journal of materials science, 1990, 25(9): 3930-3937.
[25] SUWANWARANGKUL R, CROISET E, ENTCHEV E, et al.Experimental and modeling study of solid oxide fuel cell operating with syngas fuel[J]. Journal of power sources, 2006, 161(1): 308-322.
[26] ANDREASSI L, TORO C, UBERTINI S.Modeling carbon monoxide direct oxidation in solid oxide fuel cells[J]. Journal of fuel cell science and technology, 2009, 6(2): 1.
[27] LIN B, SHI Y X, NI M, et al.Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels[J]. International journal of hydrogen energy, 2015, 40(7): 3035-3047.
[28] 郭美婷. 固体氧化物电池堆性能分析与优化设计[D]. 合肥: 中国科学技术大学, 2021.
GUO M T.Performance analysis and optimal design of solid oxide battery stack[D]. Hefei: University of Science and Technology of China, 2021.
[29] 孙成斌, 魏炜, 刘凤霞, 等. SOFC内CH4-H2O重整反应及其影响因素数值分析[J]. 电源技术, 2019, 43(12): 1955-1959.
SUN C B, WEI W, LIU F X, et al.Numerical analysis of CH4-H2O reforming reaction in SOFC and its influencing factors[J]. Chinese journal of power sources, 2019, 43(12): 1955-1959.
[30] SHANG S P, LU Y J, CAO X L, et al.A model for oxidation-induced stress analysis of Ni-based anode-supported planar solid oxide fuel cell[J]. International journal of hydrogen energy, 2019, 44(31): 16956-16964.
[31] KHAN M Z, SONG R H, HUSSAIN A, et al.Effect of applied current density on the degradation behavior of anode-supported flat-tubular solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2020, 40(4): 1407-1417.
[32] PEKSEN M.A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. International journal of hydrogen energy, 2011, 36(18): 11914-11928.

基金

国家重点研发计划基金(2021YFB4001501); 中央高校基本科研业务费专项资金(23CX03009A); 国家自然科学基金(51805543)

PDF(2121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/