考虑循环水-能源桩热交换的双螺旋埋管能源桩变热流传热模型

魏子钧, 时刚, 吴仲明, 席省麟, 陈金灿, 蔡瀚琛

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 319-327.

PDF(2278 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2278 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 319-327. DOI: 10.19912/j.0254-0096.tynxb.2023-1487

考虑循环水-能源桩热交换的双螺旋埋管能源桩变热流传热模型

  • 魏子钧, 时刚, 吴仲明, 席省麟, 陈金灿, 蔡瀚琛
作者信息 +

HEAT TRANSFER MODEL OF DOUBLE HELIX BURIED PIPE ENERGY PILE WITH VARIABLE HEAT FLOW CONSIDERING HEAT EXCHANGE BETWEEN CIRCULATING WATER AND ENERGY PILE

  • Wei Zijun, Shi Gang, Wu Zhongming, Xi Shenglin, Chen Jincan, Cai Hanchen
Author information +
文章历史 +

摘要

将双螺旋换热器等效为三维有限长螺旋线热源,基于叠加原理建立考虑循环水与能源桩之间换热的双螺旋埋管能源单桩的变热流分段叠加传热模型。将双螺旋换热器划分为多个节段,采用时间与空间的分段叠加法,利用建立的变热流条件下的近似温度场解答与推导出的分段热流密度-水温方程组得到任意时间空间下的热流密度、出水口温度、循环水温和周围土体的温度场等。通过比较COMSOL数值模型,表明所建立模型的正确性。最后,基于该传热模型讨论双螺旋埋管能源桩换热温度场的空间分布和时间效应。

Abstract

The double helix heat exchanger is equated to a three-dimensional finite-length helical line heat source, based on the principle of superposition, a segmented superposition heat transfer model for a single pile of double helix buried pipe energy considering the heat exchange between circulating water and energy piles is established. The double helix heat exchanger is divided into multiple sections, using a segmented superposition method in both time and space. The heat flow density, outlet water temperature, circulating water temperature, and the surrounding soil's temperature field at any given time and space are obtained using the approximate temperature field solution under variable heat flow conditions and the derived segmented heat flow density-water temperature equation set. The accuracy of the model is demonstrated through comparison with a COMSOL numerical model. Finally, based on this heat transfer model, the spatial distribution and time effect of the heat transfer temperature field of the double helix buried pipe energy pile are discussed.

关键词

地热能 / 能源桩 / 传热性能 / 变热源传热模型 / 分段叠加法

Key words

geothermal energy / energy pile / heat transfer performance / heat transfer model with variable source / section superposition method

引用本文

导出引用
魏子钧, 时刚, 吴仲明, 席省麟, 陈金灿, 蔡瀚琛. 考虑循环水-能源桩热交换的双螺旋埋管能源桩变热流传热模型[J]. 太阳能学报. 2025, 46(1): 319-327 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1487
Wei Zijun, Shi Gang, Wu Zhongming, Xi Shenglin, Chen Jincan, Cai Hanchen. HEAT TRANSFER MODEL OF DOUBLE HELIX BURIED PIPE ENERGY PILE WITH VARIABLE HEAT FLOW CONSIDERING HEAT EXCHANGE BETWEEN CIRCULATING WATER AND ENERGY PILE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 319-327 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1487
中图分类号: TK513.5   

参考文献

[1] WANG J Y, REN C X, GAO Y N, et al.Performance investigation of a new geothermal combined cooling, heating and power system[J]. Energy conversion and management, 2020, 208: 112591.
[2] HE Z Q, YU M Z, MAO Y D, et al.Heat transfer analysis of ground heat exchanger based on self-adaption load distribution method[J]. Journal of engineering thermophysics, 2020, 41(8): 2044-2051.
[3] 陈乐, 王尔觉, 郭易木, 等. 竖直埋管及桩基内埋管换热器传热模型研究进展[J]. 防灾减灾工程学报, 2017, 37(4): 557-564.
CHEN L, WANG E J, GUO Y M, et al.Review of analytical models for vertical-borehole ground heat exchangers and energy piles[J]. Journal of disaster prevention and mitigation engineering, 2017, 37(4): 557-564.
[4] SANI A K, SINGH R M, AMIS T, et al.A review on the performance of geothermal energy pile foundation, its design process and applications[J]. Renewable and sustainable energy reviews, 2019, 106: 54-78.
[5] INGERSOLL L R, ADLER F T, PLASS H J, et al.Theory of the earth heat exchangers for the heat pump[J]. ASHVE trans, 1950(56): 167-188.
[6] ESKILSON P.Thermal analysis of heat extraction boreholes[R]. LUND-MPH-87-13, 1987.
[7] ZENG H Y, DIAO N R, FANG Z H.A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat transfer-Asian research, 2002, 31(7): 558-567.
[8] CARSLAW H S, JAEGER J C.Conduction of heat in solids[M]. Oxford: Clarendon Press, 1947.
[9] 石磊, 张方方, 林芸, 等. 桩基螺旋埋管换热器的二维温度场分析[J]. 山东建筑大学学报, 2010, 25(2): 177-183.
SHI L, ZHANG F F, LIN Y, et al.The 2-D thermal analysis of the coil ground heat exchanger inside piles[J]. Journal of Shandong Jianzhu University, 2010, 25(2): 177-183.
[10] 武丹, 方肇洪, 张文克, 等. 无限长实心圆柱面热源传热模型的研究[J]. 制冷与空调(四川), 2009, 23(4): 101-104.
WU D, FANG Z H, ZHANG W K, et al.Study of Infinite solid cylinder heat-source transfer model[J]. Refrigeration & air condition, 2009, 23(4): 101-104.
[11] 李新, 方亮, 赵强, 等. 螺旋埋管地热换热器的线圈热源模型及其解析解[J]. 热能动力工程, 2011, 26(4): 475-479, 499.
LI X, FANG L, ZHAO Q, et al.Coil heat source model for embedded spiral tube-based geothermal heat exchangers and its analytical solutions[J]. Journal of engineering for thermal energy and power, 2011, 26(4): 475-479, 499.
[12] MAN Y, YANG H X, DIAO N R, et al.Development of spiral heat source model for novel pile ground heat exchangers[J]. HVAC & R research, 2011, 17(6): 1075-1088.
[13] CUI P, LI X, MAN Y, et al.Heat transfer analysis of pile geothermal heat exchangers with spiral coils[J]. Applied energy, 2011, 88(11): 4113-4119.
[14] LI M, LAI A C K. Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers[J]. Applied energy, 2012, 96: 451-458.
[15] 王子阳, 邵卫云, 张仪萍. 考虑土壤分层的地源热泵圆柱面热源模型[J]. 浙江大学学报(工学版), 2013, 47(8): 1338-1345.
WANG Z Y, SHAO W Y, ZHANG Y P.Cylindrical surface model of ground source heat pump considering soil stratification[J]. Journal of Zhejiang University (engineering science), 2013, 47(8): 1338-1345.
[16] 黄光勤, 杨小凤, 庄春龙, 等. 新型圆台型螺旋能量桩传热模型与换热性能[J]. 太阳能学报, 2019, 40(3): 695-702.
HUANG G Q, YANG X F, ZHUANG C L, et al.Heat transfer model and performance of novel truncated cone helix energy pile[J]. Acta energiae solaris sinica, 2019, 40(3): 695-702.
[17] 欧孝夺, 黄中正, 秦金喜, 等. 考虑桩土差异的能源桩传热模型及其热响应半径计算[J]. 太阳能学报, 2022, 43(10): 386-394.
OU X D, HUANG Z Z, QIN J X, et al.Heat transfer model and thermal response radius calculation of energy pile considering pile-soil difference[J]. Acta energiae solaris sinica, 2022, 43(10): 386-394.
[18] 席省麟, 时刚, 魏子贺. 考虑循环水-能源桩换热的单U型埋管能源桩变热流传热模型[J]. 工程热物理学报, 2023, 44(6): 1709-1719.
XI S L, SHI G, WEI Z H.Heat transfer model of a single U-tube energy pile with variable heat flow considering heat exchange between circulating water and energy pile[J]. Journal of engineering thermophysics, 2023, 44(6): 1709-1719.
[19] 王蕊, 赵静野, 陈晓春. 桩埋螺旋管地热换热器的数值模拟[J]. 北京建筑工程学院学报, 2013, 29(1): 25-29, 42.
WANG R, ZHAO J Y, CHEN X C.Numerical simulation for pile ground heat exchangers with spiral coils[J]. Journal of Beijing University of Civil Engineering and Architecture, 2013, 29(1): 25-29, 42.
[20] SHI G, XI S L, WEI Z H, et al.A simplified coupled method for geotechnical analysis of geothermal energy pile with single U-shaped tube heat exchanger[J]. Thermal science and engineering progress, 2024, 47: 102280.
[21] 高伟, 张鹏, 潘雅静, 等. 双螺旋形埋管能量桩传热性能分析[J]. 青岛理工大学学报, 2022, 43(2): 28-36.
GAO W, ZHANG P, PAN Y J, et al.Analysis of heat transfer performance of double helix buried pipe energy pile[J]. Journal of Qingdao University of Technology, 2022, 43(2): 28-36.
[22] ZHANG W K, YANG H X, CUI P, et al.Study on spiral source models revealing groundwater transfusion effects on pile foundation ground heat exchangers[J]. International journal of heat and mass transfer, 2015, 84: 119-129.
[23] KONG L P, QIAO L, XIAO Y Y, et al.A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles[J]. Journal of building engineering, 2019, 24: 100768.

基金

2022年度河南省重点研发与推广专项(科技公关)项目(222102320118)

PDF(2278 KB)

Accesses

Citation

Detail

段落导航
相关文章

/