基于聚合导纳推导运算的虚拟电厂优化调度模型

葛晓琳, 李佾玲, 曹旭丹, 缪元旻, 邓莉荣

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 522-530.

PDF(1060 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1060 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 522-530. DOI: 10.19912/j.0254-0096.tynxb.2023-1490

基于聚合导纳推导运算的虚拟电厂优化调度模型

  • 葛晓琳1,2, 李佾玲1,3, 曹旭丹1,3, 缪元旻1,3, 邓莉荣1,2
作者信息 +

OPTIMAL SCHEDULING MODEL OF VIRTUAL POWER PLANTS BASED ON AGGREGATED ADMITTANCE DERIVATIVE OPERATION

  • Ge Xiaolin1,2, Li Yiling3, Cao Xudan1,3, Miu Yuanmin1,3, Deng Lirong1,2
Author information +
文章历史 +

摘要

提出一种基于聚合导纳推导运算的虚拟电厂优化调度模型。首先,针对分布式资源出力不确定性与数量激增导致的优化模型难以求解的问题,通过聚类导纳建立虚拟电厂的功率聚合模型,在计及网损的基础上实现分布式资源出力的聚合以及出力不确定性聚合规模的削减。进而,针对虚拟电厂可调度域与分布式资源出力关联难以准确刻画的问题,提出一种虚拟电厂可调度域概率特性求解方法,采用多参数规划分段定量分析各电源随机出力与调度边界的映射关系,结合全概率原则准确刻画虚拟电厂调度边界的概率分布函数。最后,结合调度边界概率分布无法直接参与主网优化调度求解的问题,基于牛顿迭代的分位数转换方法,建立虚拟电厂与主网的联合调度模型。验证算例表明,所提模型和算法通过降低虚拟电厂调度边界的计算规模,可提升调度边界的求解效率。

Abstract

An optimization model for VPP based on aggregated admittance derivative operation is proposed. Firstly, a power aggregation model of VPP is established through clustering induction to aggregate the power output and reduce the scale of uncertainty for DRs based on the network loss, successfully addressing the difficulty of optimization model calculation. Secondly, a method based on multi-parametric programming and total probability principle is proposed for solving the probability distribution of the dispatch region of VPP, quantitatively analyzing the relationship between the random power output and dispatch region, accurately portraying the dispatch region of VPP. Finally, the joint optimal scheduling model of VPP and the main network is constructed by means of the quantile conversion method of Newton iteration to address the problem that the probability distribution of the dispatch region cannot be directly involved in the optimal scheduling of the main network. The validation example shows that the proposed model and algorithm improve the efficiency of solving the dispatch region by reducing the computational scale, and provide a new approach for the safe and stable operation of the joint system of VPP with the main network.

关键词

虚拟电厂 / 不确定性 / 可再生能源 / 聚合 / 多参数规划 / 分布式能源

Key words

virtual power plants / uncertainty / renewable energy / aggregation / multi-parametric programming / distributed energy

引用本文

导出引用
葛晓琳, 李佾玲, 曹旭丹, 缪元旻, 邓莉荣. 基于聚合导纳推导运算的虚拟电厂优化调度模型[J]. 太阳能学报. 2025, 46(1): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1490
Ge Xiaolin, Li Yiling, Cao Xudan, Miu Yuanmin, Deng Lirong. OPTIMAL SCHEDULING MODEL OF VIRTUAL POWER PLANTS BASED ON AGGREGATED ADMITTANCE DERIVATIVE OPERATION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1490
中图分类号: TM73   

参考文献

[1] 陈春武, 李娜, 钟朋园, 等. 虚拟电厂发展的国际经验及启示[J]. 电网技术, 2013, 37(8): 2258-2263.
CHEN C W, LI N, ZHONG P Y, et al.Review of virtual power plant technology abroad and enlightenment to China[J]. Power system technology, 2013, 37(8): 2258-2263.
[2] 牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34(22): 3630-3637.
NIU W J, LI Y, WANG B B.Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014, 34(22): 3630-3637.
[3] 严兴煜, 高赐威, 陈涛, 等. 数字孪生虚拟电厂系统框架设计及其实践展望[J]. 中国电机工程学报, 2023, 43(2): 604-619.
YAN X Y, GAO C W, CHEN T, et al.Framework design and application prospect for digital twin virtual power plant system[J]. Proceedings of the CSEE, 2023, 43(2): 604-619.
[4] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4440-4449.
YUAN G L, LIU H Q, YU J F, et al.Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J]. Proceedings of the CSEE, 2022, 42(12): 4440-4449.
[5] MHANNA S, CHAPMAN A C, VERBIČ G.A fast distributed algorithm for large-scale demand response aggregation[J]. IEEE transactions on smart grid, 2016, 7(4): 2094-2107.
[6] TAN Z F, ZHONG H W, WANG X Y, et al.An efficient method for estimating capability curve of virtual power plant[J]. CSEE journal of power and energy systems, 2022, 8(3): 780-788.
[7] ZHAO H T, WANG B, WANG X Y, et al.Active dynamic aggregation model for distributed integrated energy system as virtual power plant[J]. Journal of modern power systems and clean energy, 2020, 8(5): 831-840.
[8] BHATTARAI B P, DE CERIO MENDAZA I D, MYERS K S, et al. Optimum aggregation and control of spatially distributed flexible resources in smart grid[J]. IEEE transactions on smart grid, 2018, 9(5): 5311-5322.
[9] BHATTARAI B P, MYERS K S, BAK-JENSEN B, et al.Optimum aggregation of geographically distributed flexible resources in strategic smart-grid/microgrid locations[J]. International journal of electrical power & energy systems, 2017, 92: 193-201.
[10] SKOK S, MUTAPČIĆ A, RUBESA R, et al. Transmission power system modeling by using aggregated distributed generation model based on a TSO-DSO data exchange scheme[J]. Energies, 2020, 13(15): 3949.
[11] RIAZ S, MANCARELLA P.On feasibility and flexibility operating regions of virtual power plants and TSO/DSO interfaces[C]//2019 IEEE Milan PowerTech, Milan, Italy, 2019: 1-6.
[12] SILVA J, SUMAILI J, BESSA R J, et al.Estimating the active and reactive power flexibility area at the TSO-DSO interface[J]. IEEE transactions on power systems, 2018, 33(5): 4741-4750.
[13] YI Z K, XU Y L, GU W, et al.A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1332-1346.
[14] BAROT S, TAYLOR J A.A concise, approximate representation of a collection of loads described by polytopes[J]. International journal of electrical power & energy systems, 2017, 84: 55-63.
[15] YI Z K, XU Y L, GU W, et al.Aggregate operation model for numerous small-capacity distributed energy resources considering uncertainty[J]. IEEE transactions on smart grid, 2021, 12(5): 4208-4224.
[16] TAN Z F, ZHONG H W, XIA Q, et al.Estimating the robust P-Q capability of a technical virtual power plant under uncertainties[J]. IEEE transactions on power systems, 2020, 35(6): 4285-4296.
[17] 陈新和, 裴玮, 邓卫, 等. 数据驱动的虚拟电厂调度特性封装方法[J]. 中国电机工程学报, 2021, 41(14): 4816-4828.
CHEN X H, PEI W, DENG W, et al.Data-driven virtual power plant dispatching characteristic packing method[J]. Proceedings of the CSEE, 2021, 41(14): 4816-4828.
[18] XU Z W, HU Z C, SONG Y H, et al.Risk-averse optimal bidding strategy for demand-side resource aggregators in day-ahead electricity markets under uncertainty[J]. IEEE transactions on smart grid, 2017, 8(1): 96-105.
[19] 曾博, 胡强, 张玉莹. 含高比例风电的电-气互联系统概率能流计算分析[J]. 太阳能学报, 2020, 41(4): 205-214.
ZENG B, HU Q, ZHANG Y Y.Probabilistic energy flow calculation and analysis of integrated electricity-gas systems with high penetration wind power[J]. Acta energiae solaris sinica, 2020, 41(4): 205-214.
[20] 王帅飞, 王维庆, 王海云, 等. 基于可再生能源的冷热电联供系统优化[J]. 太阳能学报, 2021, 42(9): 26-32.
WANG S F, WANG W Q, WANG H Y, et al.Optimization of cogeneration ststem based on renewable energy[J]. Acta energiae solaris sinica, 2021, 42(9): 26-32.
[21] 潘华, 梁作放, 薛强中, 等. 基于分时电价的含风-光-气-储虚拟电厂经济调度[J]. 太阳能学报, 2020, 41(8): 115-122.
PAN H, LIANG Z F, XUE Q Z, et al.Economic dispatch of wind/PV/gas/storage virtual power plant based on time-of-use power price[J]. Acta energiae solaris sinica, 2020, 41(8): 115-122.
[22] 郇嘉嘉, 洪海峰, 隋宇, 等. 计及风-光-荷相关性的概率-区间约束潮流模型与算法[J]. 电力建设, 2020, 41(7): 117-126.
HUAN J J, HONG H F, SUI Y, et al.Model and algorithm of probabilistic interval constrained power flow considering the correlation among wind, solar and load[J]. Electric power construction, 2020, 41(7): 117-126.
[23] 陈胜, 卫志农, 孙国强, 等. 电-气混联综合能源系统概率能量流分析[J]. 中国电机工程学报, 2015, 35(24): 6331-6340.
CHEN S, WEI Z N, SUN G Q, et al.Probabilistic energy flow analysis in integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2015, 35(24): 6331-6340.
[24] 向明旭, 杨知方, 余娟, 等. 配电网线性潮流模型通式及误差分析[J]. 中国电机工程学报, 2021, 41(6): 2053-2063.
XIANG M X, YANG Z F, YU J, et al.Linear power flow model in distribution network: unified expression and error analysis[J]. Proceedings of the CSEE, 2021, 41(6): 2053-2063.
[25] 柳志航, 卫志农, 高昇宇, 等. 源-荷互动环境下含高比例风电并网的自适应线性化概率潮流计算[J]. 电网技术, 2019, 43(11): 3926-3937.
LIU Z H, WEI Z N, GAO S Y, et al.Adaptive-linearized probabilistic power flow calculation for power grid integrated with high proportion wind power in source-load interactive environment[J]. Power system technology, 2019, 43(11): 3926-3937.
[26] FAÍSCA N P,DUA V,PISTIKOPOULOS E N.Multiparametric linear and quadratic programming[J].Process systems engineering, 2010, 1-23.
[27] WANG S Y, WU W C, CHEN Q Z, et al.Stochastic flexibility evaluation for virtual power plants by aggregating distributed energy resources[J]. CSEE journal of power and energy systems, 2024, 10(3): 988-999.
[28] 王宣定, 吴文传, 刘镭, 等. 基于多参数规划的有源配电网分布式光伏容量评估方法[J]. 电力系统自动化, 2018, 42(24): 20-26.
WANG X D, WU W C, LIU L, et al.Multi-parameter programming based capacity assessment method of distributed photovoltaic for active distribution network[J]. Automation of electric power systems, 2018, 42(24): 20-26.

基金

国家自然科学基金(52077130); 上海市青年科技启明星计划(21QA1403500); 上海绿色能源并网工程技术研究中心(13DZ2251900)

PDF(1060 KB)

Accesses

Citation

Detail

段落导航
相关文章

/