以节约耗材、施工快速、质量可控等为目标,结合陆上风电梁板式基础结构特点,提出一种新型单块双肋梁装配式基础。目前对装配式梁板基础结构受力特性的研究较少,该文通过建立基础整体有限元模型及开展室内模型试验,研究预制装配式梁板基础受V(竖向荷载)-H(水平荷载)-M(弯矩荷载)复合荷载下的结构受力特性,并重点分析基础肋梁、底板、台柱等的承载及破坏模式。研究表明,新型单块双肋梁装配式基础结构具有良好的承载及结构力学性能,安全储备可达设计值的1.44倍;基础整体稳定性良好,各项指标满足现有规范设计要求;同时,台柱-肋梁交接处为此类型基础结构承载及荷载传递的关键部位,设计及施工时应重点关注。
Abstract
With the goal of saving materials, ensuring rapid construction, and ensuring controllable quality, a new type of single double-ribbed prefabricated assembly raft foundation is proposed by considering the structural characteristics of raft foundations. Currently, there is limited research on the mechanical characteristics of prefabricated raft foundation structures. This study establishes a comprehensive finite element model of the foundation and conducts model experiments to investigate the structural load-bearing characteristics of prefabricated raft foundations under V(vertical)-H(horizontal)-M(moment) composite load. It specifically focuses on analyzing the load-bearing capacity and failure modes of foundation rib beams, baseplate, and pillar supports. The results show that the new single double-ribbed prefabricated raft foundation structure has good load-bearing and structural mechanical properties, and the safety reserve can reach 1.44 times the design value. The overall stability of the foundation is good, and all indicators meet the design requirements of existing specifications. The junction between the column and the rib beam is a key part of the bearing and load transfer of this type of foundation structure, which should be paid attention to during the design and construction.
关键词
预制结构 /
陆上风电 /
模型试验 /
复合加载 /
数值模拟 /
受力特性
Key words
prefabricated construction /
onshore wind turbine /
model test /
composite loading /
numerical simulation /
mechanical characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Global Wind Report 2023[R].Global Wind Report 2023[R]. Global Wind Energy Council, 2023.
[2] 张志平. 风机塔架岩石锚杆基础力学特性分析及其试验研究[D]. 南昌: 南昌大学, 2017.
ZHANG Z P.Mechanical characteristics analysis and experimental study on rock anchor foundation of fan tower[D]. Nanchang: Nanchang University, 2017.
[3] 王海飞. 风机基础土岩组合地基变形与稳定性研究[D]. 杭州: 浙江大学, 2022.
WANG H F.Study on deformation and stability of soil-rock composite foundation of fan foundation[D]. Hangzhou: Zhejiang University, 2022.
[4] 理倞哲. 圆形扩展风机基础混凝土温度应力分析与预测研究[D]. 大连: 大连理工大学, 2022.
LI J Z.Study on temperature stress analysis and prediction of concrete for circular expansion fan foundation[D]. Dalian: Dalian University of Technology, 2022.
[5] 王振扬. 基础环式风机基础动力响应特性与疲劳破坏加固方法研究[D]. 武汉: 武汉大学, 2022.
WANG Z Y.Study on dynamic response characteristics and fatigue failure reinforcement method of foundation ring fan[D]. Wuhan: Wuhan University, 2022.
[6] 宋欢, 丛欧, 郝华庚, 等. 预制装配式风机基础受力特性研究[J]. 建筑结构, 2018, 48(13): 96-100.
SONG H, CONG O, HAO H G, et al.Research on mechanical properties of prefabricated foundation of wind turbine generators[J]. Building structure, 2018, 48(13): 96-100.
[7] MOTALLEBIYAN A, BAYAT M, NADI B.Analyzing the effects of soil-structure interactions on the static response of onshore wind turbine foundations using finite element method[J]. Civil engineering infrastructures journal, 2020, 53(1): 189-205.
[8] 张浦阳, 许云龙, 丁红岩, 等. 预制装配式风机基础抗倾覆及受力特性研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(12): 1289-1299.
ZHANG P Y, XU Y L, DING H Y, ET AL.Study on overturning resistance and mechanical characteristics of prefabricated fan foundation[J]. Journal of Tianjin University (science and technology), 2022, 55(12): 1289-1299.
[9] 曾斌. 复合加载模式下陆上风机扩展基础结构试验研究[D]. 天津: 天津大学, 2018.
ZENG B.Experimental study on extended foundation structure of onshore wind turbine under compound loading mode[D]. Tianjin: Tianjin University, 2018.
[10] 张浦阳, 曾斌, 丁红岩, 等. 陆上风机圆形扩展基础底板内力及脱开规律研究[J]. 建筑结构, 2020, 50(3): 129-136.
ZHANG P Y, ZENG B, DING H Y, et al.Analysis of internal force and disengagement law for circular expansion foundation plate of onshore wind turbine[J]. Building structure, 2020, 50(3): 129-136.
[11] 木林隆, 连柯楠, 黄茂松, 等. 风机梁板式桩筏基础承载特性大型模型试验研究[J]. 岩土力学, 2015, 36(7): 1877-1882.
MU L L, LIAN K N, HUANG M S, et al.Large-scale model test on bearing capacity of piled beam-slab foundation for wind turbine[J]. Rock and soil mechanics, 2015, 36(7): 1877-1882.
[12] 木林隆, 李杰, 张延军, 等. 竖向荷载对风机基础水平承载性能影响试验研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 55-60.
MU L L, LI J, ZHANG Y J, et al.Influence of vertical load on the lateral bearing capacity of wind turbine foundations[J]. Journal of Chongqing Jiaotong University (natural science), 2017, 36(2): 55-60.
[13] 李婉, 木林隆, 连柯楠. 考虑基础刚度影响的风机梁板式桩筏基础模型试验研究[J]. 岩土力学, 2014, 35(10): 2875-2880.
LI W, MU L L, LIAN K N.Model test on piled beam-slab raft foundation for wind turbines considering raft rigidity[J]. Rock and soil mechanics, 2014, 35(10): 2875-2880.
[14] 李征, 黄宜, 黄冬平, 等. 预制装配梁板式风力机基础整体性分析[J]. 太阳能学报, 2023, 44(10): 427-436.
LI Z, HUANG Y, HUANG D P, et al.Integral analysis of prefabricated beam-slab wind turbine foundation[J]. Acta energiae solaris sinica, 2023, 44(10): 427-436.
[15] Anker Foundations.“Wind Turbine Foundations” [EB/OL]. https://www.ankerfoundations.com/en/wind-turbine-foundation/.
[16] GUO Y H, ZHANG P Y, DING H Y, et al.Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment[J]. Renewable energy, 2021, 172: 16-33.
[17] 练继建, 王芃文, 乐丛欢, 等. 吸力锚在粉质黏土中的上拔特性试验研究[J]. 太阳能学报, 2021, 42(5): 443-449.
LIAN J J, WANG P W, LE C H, et al.Experimental study on uplift characteristics of suction anchor in silty clay[J]. Acta energiae solaris sinica, 2021, 42(5): 443-449.
[18] 韦古强, 何子睿, 刘广东, 等. 水泥土复合单桩水平承载性能模型试验研究[J]. 太阳能学报, 2022, 43(12): 353-359.
WEI G Q, HE Z R, LIU G D, et al.Model test study on horizontal bearing capacity of cement-soil composite single pile[J]. Acta energiae solaris sinica, 2022, 43(12): 353-359.
[19] GB 50010—2002, 混凝土结构设计规范[S].
GB 50010—2002, Code for design of concrete structures[S].
[20] GB 50051—2013, 烟囱设计规范[S].
GB 50051—2013, Code for design of chimneys[S].
基金
华能集团总部科技项目-陆上新型风力机基础开发及应用关键技术研究(HNKJ21-H37)