熔盐储热辅助低压缸零出力机组深度调峰的应用分析

张婉滢, 金晶, 解小军, 高新勇, 兰俊杰, 梁国威

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 279-287.

PDF(1067 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1067 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 279-287. DOI: 10.19912/j.0254-0096.tynxb.2023-1504

熔盐储热辅助低压缸零出力机组深度调峰的应用分析

  • 张婉滢1, 金晶1, 解小军2, 高新勇3, 兰俊杰2, 梁国威1
作者信息 +

APPLICATION ANALYSIS OF DEEP PEAK SHAVING OF LOW-PRESSURE CYLINDER ZERO-OUTPUT UNIT ASSISTED BY MOLTEN SALT HEAT STORAGE

  • Zhang Wanying1, Jin Jing1, Xie Xiaojun2, Gao Xinyong3, Lan Junjie2, Liang Guowei1
Author information +
文章历史 +

摘要

建立电力现货市场下熔盐储热辅助低压缸零出力机组深度调峰的容量优化模型及其可行性评价模型,并以山西省某实施低压缸零出力改造的350 MW热电机组为例进行计算分析。结果显示:该机组配置熔盐储热装置的最优容量为471.16 MWh,静态投资回收期为2.3 a。配置储热装置导致机组售电收入降低,但煤耗成本降低,调峰收入增长,净收益相比未配置熔盐储热增加3167.16万元。配置熔盐储热后机组的运行灵活性显著提高,处于电力现货市场第一档和第二档的调峰时长均增加,总调峰时长占比从配置熔盐储热前的56.4%增至85.6%。此外,煤炭价格的增加和供热面积的增加对改造项目的净收入和投资回收期是不利的。

Abstract

A capacity optimization model and feasibility evaluation model are established to assess the deep peak shaving of low-pressure cylinder zero-output units with molten salt thermal storage in the electricity spot market. The analysis is conducted using a 350 MW thermal power unit in Shanxi Province, which undergoes a zero-output modification in the low-pressure cylinder. The results show that the optimal capacity for the unit to be equipped with a molten salt thermal storage system is 471.16 MWh, with a static investment payback period of 2.3 years. The installation of the thermal storage system reduces the unit's electricity sales revenue but lowers coal consumption costs and increases peak shaving revenue, leading to a net profit increase of 31.67 million yuan compared to the non-configured molten salt thermal storage option. With the configuration of molten salt thermal storage, the operational flexibility of the unit significantly improves. The duration of peak shaving in the first and second price tiers of the electricity spot market increases, with the overall peak shaving duration rising from 56.4% to 85.6%. Additionally, an increase in coal prices and heating area negatively impacts the net profit and investment payback period of the transformation project.

关键词

热电联产 / 储能 / 熔盐 / 深度调峰 / 容量配置 / 灵活性

Key words

CHP plant / energy storage / molten salt / depth peak regulation / capacity allocation / flexibility

引用本文

导出引用
张婉滢, 金晶, 解小军, 高新勇, 兰俊杰, 梁国威. 熔盐储热辅助低压缸零出力机组深度调峰的应用分析[J]. 太阳能学报. 2025, 46(1): 279-287 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1504
Zhang Wanying, Jin Jing, Xie Xiaojun, Gao Xinyong, Lan Junjie, Liang Guowei. APPLICATION ANALYSIS OF DEEP PEAK SHAVING OF LOW-PRESSURE CYLINDER ZERO-OUTPUT UNIT ASSISTED BY MOLTEN SALT HEAT STORAGE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 279-287 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1504
中图分类号: TM621   

参考文献

[1] 新华社. 习近平在第七十五届联合国大会一般性辩论上的讲话[EB/OL]. http://www.cppcc.gov.cn/zxww/2020/09/23/ARTI1600819264410115.shtml.
Xinhua News Agency.Xi Jinping's speech at the general debate of the 75th UN General Assembly[EB/OL]. http://www.cppcc.gov.cn/zxww/2020/09/23/ARTI16008192644 10115.shtml.
[2] 国家能源局.国家能源局发布2024年1-11月份全国电力工业统计数据[EB/OL].https://www.nea.gov.cn/20241220/73f189cc6e6540caafac2b819623fc08/c.html.
National Energy Administration. The National Energy Administration released the national power industry statistics from January to November2024[EB/OL]. https://www.nea.gov.cn/20241220/73f189cc6e6540caafac2b819623fc08/c.html.
[3] 孟繁林, 钟海旺, 夏清. 高比例可再生能源电力系统中电量约束型机组参与现货市场的机制[J]. 电网技术, 2023, 47(3): 1047-1055.
MENG F L, ZHONG H Q, XIA Q,et al.Spot market mechanism for energy constrained generation units in high proportion renewable energy power system[J]. Power system technology, 2023, 47(3): 1047-1055.
[4] 大众日报. 山东电力现货市场结算试运行平稳有序[EB/OL]. http://nyj.shandong.gov.cn/art/2022/2/22/art_253733_10291636.html.
Volkswagen Daily.Shandong electric power spot market settlement trial run smoothly and orderly[EB/OL]. http://nyj.shandong.gov.cn/art/2022/2/22/art_253733_10291636.html.
[5] 禤培正, 孙高星, 朱继忠, 等. 风电不确定性对电力现货市场电价的影响[J]. 南方电网技术, 2018, 12(12): 64-70.
XUAN P Z, SUN G X, ZHU J Z, et al.Impact of wind power uncertainty on electricity price in electric power spot market[J]. Southern power system technology, 2018, 12(12): 64-70.
[6] 马汀山, 王伟, 王东晔, 等. 基于熔盐储热辅助煤电机组深度调峰的系统设计及容量计算方法研究[J]. 热力发电, 2023, 52(7): 113-118.
MA T S,WANG W, WANG D Y, et al.Research on system design and capacity calculation method for deep peak shaving of coal-fire unit based on molten salt heat storage assistance[J]. Thermal power generation, 2023, 52(7): 113-118.
[7] YUSTA J M, DE OLIVEIRA-DE JESUS P M, KHODR H M. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market[J]. Electric power systems research, 2008, 78(10): 1764-1772.
[8] 章艳, 吕泉, 张娜, 等. 面向风电消纳的电-热调峰资源协同运行研究[J]. 电网技术, 2020, 44(4): 1350-1359.
ZHANG Y, LYU Q, ZHANG N, et al.Cooperative operation of power-heat regulation resources for wind power accommodation[J]. Power system technology, 2020, 44(4): 1350-1359.
[9] 戈志华, 张倩, 熊念, 等. 330 MW供热机组低压缸近零出力热力性能分析[J]. 化工进展, 2020, 39(9): 3650-3657.
GE Z H, ZHANG Q, XIONG N, et al.Thermal performance analysis of 330 MW heating unit with low pressure cylinder near zero output[J]. Chemical industry and engineering progress, 2020, 39(9): 3650-3657.
[10] 王建勋. 运行背压变化对低压缸零出力技术安全性及经济性的影响分析[J]. 化工进展, 2020, 39(S1): 85-89.
WANG J X.Analysis on the influence of the change of operating back pressure on the safety and economy of zero output technology of low pressure cylinder[J]. Chemical industry and engineering progress, 2020, 39(S1): 85-89.
[11] 刘畅, 耿林霄, 王珩, 等. 高低旁路联合供热改造控制策略研究[J]. 热力发电, 2020, 49(11): 126-132.
LIU C, GENG L X, WANG H, et al.Control strategy in transformation of high and low pressure bypass combined heat supply[J]. Thermal power generation, 2020, 49(11): 126-132.
[12] 王占洲, 曹丽华, 董恩伏, 等. 基于旁路系统提升热电机组风电消纳能力研究[J]. 太阳能学报, 2021, 42(1): 317-323.
WANG Z Z, CAO L H, DONG E F, et al.Improving wind power accommodation of combined heat and power plant based on bypass system[J]. Acta energiae solaris sinica, 2021, 42(1): 317-323.
[13] 吕泉, 杜思瑶, 刘乐, 等. 东北辅助服务市场下热电厂配置电锅炉调峰的经济性分析[J]. 电力系统自动化, 2019, 43(20): 49-56, 81.
LYU Q, DU S Y, LIU L, et al.Economic analysis on peak shaving of combined heat and power plant with electric boilers in auxiliary service market of Northeast China[J]. Automation of electric power systems, 2019, 43(20): 49-56, 81.
[14] 杨秋霞, 支成, 袁冬梅, 等. 基于启停电锅炉与储热装置协调供热的风电消纳低碳经济调度[J]. 太阳能学报, 2020, 41(9): 21-28.
YANG Q X, ZHI C, YUAN D M, et al.Wind power accommodation low-carbon economic dispatch based on coordination between automatic start-stop electric boiler and heat accumulator[J]. Acta energiae solaris sinica, 2020, 41(9): 21-28.
[15] 马汀山, 王妍, 吕凯, 等. “双碳”目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148.
MA T S, WANG Y, LYU K, et al.Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the“dual carbon” goal[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148.
[16] BENALCAZAR P.Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: a case study[J]. Energy, 2021, 234: 121323.
[17] 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用[J]. 热力发电, 2018, 47(5): 8-13.
HOU Y T, LI X B, LIU C, et al.Flexibility reform situation and technical application of thermal power units[J]. Thermal power generation, 2018, 47(5): 8-13.
[18] 王建勋. 650 MW超临界机组低压缸零出力技术的灵活性调峰能力及经济性分析[J]. 热能动力工程, 2021, 36(2): 18-23.
WANG J X.Analysis of flexible peak-load regulation capability and economy on the zero output technology of low-pressure cylinder for 650 MW supercritical unit[J]. Journal of engineering for thermal energy and power, 2021, 36(2): 18-23.
[19] 汪可, 田亮. 供热机组低压缸零出力工况下热经济性分析[J]. 华北电力大学学报(自然科学版), 2023, 50(4): 112-118, 126.
WANG K, TIAN L.Thermal economy analysis of heating unit under zero-output condition of low pressure cylinder[J]. Journal of North China Electric Power University (natural science edition), 2023, 50(4): 112-118, 126.
[20] 崔杨, 纪银锁, 仲悟之, 等. 基于电-热联合储能的弃风消纳调度方法[J]. 太阳能学报, 2021, 42(12): 192-199.
CUI Y, JI Y S, ZHONG W Z, et al.Dispatching method of wind power curtailment based on electric-thermal combined energy storage[J]. Acta energiae solaris sinica, 2021, 42(12): 192-199.
[21] 刘金恺, 鹿院卫, 魏海姣, 等. 熔盐储热辅助燃煤机组调峰系统设计及性能对比[J]. 热力发电, 2023, 52(2): 111-118.
LIU J K, LU Y W, WEI H J, et al.Design and performance comparison of peak shaving system of coal-fired unit aided by molten salt heat storage[J]. Thermal power generation, 2023, 52(2): 111-118.
[22] 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8): 2682-2691.
PANG L P, ZHANG S G, DUAN L Q.Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8): 2682-2691.
[23] 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电, 2023, 52(2): 1-9.
ZUO F F, HAN W, YAO M Y.Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal power generation, 2023, 52(2): 1-9.
[24] WANG J J, ZHAI Z Q, JING Y Y, et al.Particle swarm optimization for redundant building cooling heating and power system[J]. Applied energy, 2010, 87(12): 3668-3679.
[25] GONZÁLEZ-ROUBAUD E, PÉREZ-OSORIO D, PRIETO C. Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts[J]. Renewable and sustainable energy reviews, 2017, 80: 133-148.
[26] BHATNAGAR P, SIDDIQUI S, SREEDHAR I, et al.Molten salts: potential candidates for thermal energy storage applications[J]. International journal of energy research, 2022, 46(13): 17755-17785.
[27] FERNÁNDEZ Á G, VELIZ S, FUENTEALBA E, et al. Thermal characterization of solar salts from north of Chile and variations of their properties over time at high temperature[J]. Journal of thermal analysis and calorimetry, 2017, 128(3): 1241-1249.

基金

上海市科委项目(23010503500); 中国华电集团有限公司科技项目(CHDKJ23-04-02-342)

PDF(1067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/