为降低多孔介质吸热器的红外辐射散热损失,设计一种石英玻璃孔板与多孔介质吸收系数阶梯增加双层吸热器。通过高温传热实验和耦合传热模型,对双层吸热器的聚集太阳光热转换特性进行研究。结果表明:由于石英玻璃孔板对多孔介质红外热辐射的回收,与单层多孔介质吸收器相比,双层吸热器热效率提高10%;受石英玻璃孔板太阳光低吸收和流体的射流作用,双层吸热器前端的石英玻璃孔板固体温度较空气流体的出口质量平均温度低近300 K,双层吸热器具有明显的容积吸热效应。瞬态传热计算结果表明,固体域升温过程大概持续20 min,而流体出口温度需50 min进入稳态。研究结论为高效率多孔介质吸热器的设计与技术发展提供参考依据。
Abstract
To minimize the re-radiation loss emitted from the solar receiver,a double-layer solar receiver that comprises quartz glass perforated plates and silicon carbide porous material was designed,manufactured,and experimentally tested.The proposed double-layer solar receiver can achieve an increasing absorption effect and improve thermal efficiency.Results show that the double-layer solar receiver offered 10% more efficiency than the single-layer porous solar receiver through the re-radiation recycling of the quartz glass perforated plates.The mass-weighted averaging outlet temperature of the working fluid approximates 300 K higher than the inlet wall temperature of the quartz glass perforated plates,leading to a significant volumetric effect.Moreover,the heating up time of the solid phase was about 20 minutes,while the working fluid needed 50 minutes to get the steady state.The conclusions support developing porous volumetric solar receivers in advanced power cycles.
关键词
太阳能 /
吸热器 /
热流密度 /
温度控制 /
热效率
Key words
solar energy /
solar absorber /
thermal flux /
temperature control /
thermal efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WU Z Y, CALIOT C, FLAMANT G, et al.Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J]. Solar energy, 2011, 85(9): 2374-2385.
[2] 许家鸣, 胡健, 陈冬, 等. 塔式太阳能腔体吸热器光热耦合模型与试验[J]. 太阳能学报, 2023, 44(2): 15-21.
XU J M, HU J, CHEN D, et al.Photo-thermal coupling model and experiment of solar tower cavity receiver[J]. Acta energiae solaris sinica, 2023, 44(2): 15-21.
[3] AVILA-MARIN A L, FERNANDEZ-RECHE J, MARTINEZ-TARIFA A. Modelling strategies for porous structures as solar receivers in central receiver systems: a review[J]. Renewable and sustainable energy reviews, 2019, 111: 15-33.
[4] 戴贵龙, 陈雪淇, 庄莹. 玻璃套管双层吸热芯的热辐射特性研究[J]. 太阳能学报, 2022, 43(7): 186-190.
DAI G L, CHEN X Q, ZHUANG Y.Thermal radiation performances of solar volumetric absorbers made up of muliple tubes and porous[J]. Acta energiae solaris sinica, 2022, 43(7): 186-190.
[5] CUNSOLO S, COQUARD R, BAILLIS D, et al.Radiative properties of irregular open cell solid foams[J]. International journal of thermal sciences, 2017, 117: 77-89.
[6] 魏秀东, 许英朝, 肖君, 等. 塔式太阳能热发电吸热器表面红外测温研究[J]. 太阳能学报, 2021, 42(11): 123-128.
WEI X D, XU Y C, XIAO J, et al.Research on infrared temperature measurement for receiver surface in solar tower power station[J]. Acta energiae solaris sinica, 2021, 42(11): 123-128.
[7] DU S, XIA T, HE Y L, et al.Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution[J]. Applied energy, 2020, 275: 115343.
[8] ZHANG Q Q, CHANG Z S, FU M K, et al.Performance analysis of a light uniform device for the solar receiver or reactor[J]. Energy, 2023, 270: 126940.
[9] CHEN X, XIA X L, YAN X W, et al.Heat transfer analysis of a volumetric solar receiver with composite porous structure[J]. Energy conversion and management, 2017, 136: 262-269.
[10] ZHANG S D, SUN C, SUN F X, et al.Spectral properties of an UV fused silica within 0.8 to 5 µm at elevated temperatures[J]. Infrared physics & technology, 2017, 85: 293-299.
[11] 陈雪淇. 双层吸热芯太阳能热转换特性研究[D]. 福州: 福建工程学院, 2021.
CHEN X Q.Study on solar thermal conversion characteristics of double-layer heat absorption core[D]. Fuzhou: Fujian University of Technology, 2021.
基金
国家自然科学基金(52176181; 51806037)