液氢泄漏后产生的易燃易爆氢气云团存在严重安全隐患。通过基于OpenFOAM开发的求解器,对液氢泄漏及云团扩散行为进行分析。该求解器采用简化蒸发模型确定液氢蒸发速率,通过气相和固相求解器分别模拟云团的扩散以及地基的传热,使用共轭传热方法保证气-固区域间温度和热通量的连续性,并采用考虑大气稳定度的对数风廓线作为大气边界条件。通过风廓线观测数据和液氢泄漏实验数据验证提出的求解器。研究结果表明,稳定大气条件、高温以及大泄漏量均导致可燃氢气云团横向扩散范围增大,采用滞留坑方案可将蒸发速率降低99%,并使可燃云团的扩散距离及高度分别降低46%和76%,有效缩小了危险范围。
Abstract
The flammable and explosive cloud resulting from a liquid hydrogen leak poses a serious safety hazard. Using a solver developed with OpenFOAM, an in-depth analysis of liquid hydrogen leakage and subsequent dispersion behavior was conducted. The solver employed a simplified evaporation model to determine the evaporation rate. Hydrogen cloud dispersion and heat transfer from the ground were simulated using separate gas-phase and solid-phase solvers. The conjugate heat transfer method was used to ensure continuous temperature and heat flux between the gas and solid regions. A logarithmic wind profile incorporating atmospheric stability was also utilized. The solver was validated using wind profile measurements and liquid hydrogen leakage experiments. The results showed stable atmospheric conditions, high temperatures, and large leakage volumes increased lateral dispersion of flammable hydrogen clouds. Additionally, a retention pit scheme reduced the evaporation rate by 99%, flammable cloud distance by 46%, and cloud height by 76%, effectively decreasing the hazardous range.
关键词
氢 /
液体泄漏 /
大气边界层 /
扩散 /
数值模拟
Key words
hydrogen /
leakage (fluid) /
atmospheric boundary layer /
dispersion /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VERFONDERN K, DIENHART B.Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization[J]. International journal of hydrogen energy, 1997, 22(7): 649-660.
[2] HECHT E S, PANDA P P.Mixing and warming of cryogenic hydrogen releases[J]. International journal of hydrogen energy, 2019, 44(17): 8960-8970.
[3] KOBAYASHI H, NARUO Y, MARU Y, et al.Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion[J]. International journal of hydrogen energy, 2018, 43(37): 17928-17937.
[4] KOBAYASHI H, DAIMON Y, UMEMURA Y, et al.Temperature measurement and flow visualization of cryo-compressed hydrogen released into the atmosphere[J]. International journal of hydrogen energy, 2018, 43(37): 17938-17953.
[5] SHU Z Y, LEI G, LIANG W Q, et al.Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air[J]. Process safety and environmental protection, 2022, 162: 923-931.
[6] STATHARAS J C, VENETSANOS A G, BARTZIS J G, et al.Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of hazardous materials, 2000, 77(1-3): 57-75.
[7] HEDLEY D, HAWKSWORTH S J, RATTIGAN W, et al.Large scale passive ventilation trials of hydrogen[J]. International journal of hydrogen energy, 2014, 39(35): 20325-20330.
[8] WITCOFSKI R D, CHIRIVELLA J E.Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International journal of hydrogen energy, 1984, 9(5): 425-435.
[9] SUN R F, PU L, HE Y C, et al.Phase change modeling of air at the liquid hydrogen release[J]. International journal of hydrogen energy, 2024, 50: 717-731.
[10] LIU Y L, WEI J J, LEI G, et al.Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions[J]. International journal of hydrogen energy, 2018, 43(15): 7643-7651.
[11] PU L, TANG X, SHAO X Y, et al.Numerical investigation on the difference of dispersion behavior between cryogenic liquid hydrogen and methane[J]. International journal of hydrogen energy, 2019, 44(39): 22368-22379.
[12] GIANNISSI S G, VENETSANOS A G.Study of key parameters in modeling liquid hydrogen release and dispersion in open environment[J]. International journal of hydrogen energy, 2018, 43(1): 455-467.
[13] LIU Y L, WEI J J, LEI G, et al.Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International journal of hydrogen energy, 2019, 44(3): 2059-2068.
[14] GIANNISSI S G, VENETSANOS A G, MARKATOS N, et al.CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International journal of hydrogen energy, 2014, 39(28): 15851-15863.
[15] TANG X, PU L, SHAO X Y, et al.Dispersion behavior and safety study of liquid hydrogen leakage under different application situations[J]. International journal of hydrogen energy, 2020, 45(55): 31278-31288.
[16] HANSEN O R.Liquid hydrogen releases show dense gas behavior[J]. International journal of hydrogen energy, 2020, 45(2): 1343-1358.
[17] SHAO X Y, PU L, TANG X, et al.Parametric influence study of cryogenic hydrogen dispersion on theoretical aspect[J]. International journal of hydrogen energy, 2020, 45(38): 20153-20162.
[18] 孙壮, 李树民, 朱蓉, 等. 考虑大气稳定度的典型复杂地形风场CFD模式[J]. 太阳能学报, 2024, 45(4): 197-205.
SUN Z, LI S M, ZHU R, et al.CFD model of wind field in typical complex terrain considering atmospheric stability[J]. Acta energiae solaris sinica, 2024, 45(4): 197-205.
[19] 杨祥生, 赵宁, 田琳琳, 等. 基于Park-Gauss模型考虑大气稳定性对布局优化的影响[J]. 太阳能学报, 2021, 42(3): 43-47.
YANG X S, ZHAO N, TIAN L L, et al.Influence of atmospheric stability on layout optimization based on park-Gauss model[J]. Acta energiae solaris sinica, 2021, 42(3): 43-47.
[20] MIDDHA P, HANSEN O R, STORVIK I E.Validation of CFD-model for hydrogen dispersion[J]. Journal of loss prevention in the process industries, 2009, 22(6): 1034-1038.
[21] VERFONDERN K, DIENHART B.Pool spreading and vaporization of liquid hydrogen[J]. International journal of hydrogen energy, 2007, 32(2): 256-267.
[22] 贺园园, 程雪玲, 朱蓉. 适用于平坦草原的近地层以上风廓线推算方法[J]. 太阳能学报, 2024, 45(6): 451-460.
HE Y Y, CHENG X L, ZHU R.Method of wind speed profile extrapolating from surface observations over flat grassland[J]. Acta energiae solaris sinica, 2024, 45(6): 451-460.
[23] BOSCH C, WETERINGS R.Methods for the calculation of physical effects[M]. Hague: Min. VROM, 1997.
[24] HAN J, ARYA S P, SHAOHUA S, et al.An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory[R]. NAS 1.26:210298, 2000.