基于加热电缆的地源热泵岩土导热系数测试与验证研究

关鹏, 沈振强, 段新胜, 焦玉勇

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 328-334.

PDF(1437 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1437 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 328-334. DOI: 10.19912/j.0254-0096.tynxb.2023-1527

基于加热电缆的地源热泵岩土导热系数测试与验证研究

  • 关鹏1,2, 沈振强1, 段新胜1, 焦玉勇1
作者信息 +

TEST AND VERIFICATION OF THERMAL CONDUCTIVITY OF GROUND SOURCE HEAT PUMP ROCK AND SOIL BASED ON HEATING CABLE

  • Guan Peng1,2, Shen Zhenqiang1, Duan Xinsheng1, Jiao Yuyong1
Author information +
文章历史 +

摘要

岩土导热系数对地源热泵系统的设计和运行有重要影响。获取岩土导热系数的常规热响应试验设备水路电路复杂,存在易受外界干扰、稳定性差、成本高等问题。为解决上述问题,设计一种基于加热电缆的岩土热响应试验仪,以位于武汉市汉阳区的一口地埋管换热孔为研究对象,分别进行常规及加热电缆型热响应和热恢复试验,结合无限长线热源理论和热流叠加原理对各测试阶段的数据进行分析。结果显示加热电缆型热恢复试验精度较高,与常规热响应试验所测岩土导热系数相差仅为0.14 W/(m·K)。研究表明加热电缆型热响应和热恢复试验具有成本低、简单易操作且能获得不同深度地层的岩土导热系数等优势。

Abstract

Ground thermal conductivity has an important influence on the design and operation of Ground Source Heat Pump system. Conventional thermal response test rigs, used to assess the ground thermal conductivity, has complex water and electricity lines which lead to some problems, such as vulnerable to external interference, poor stability and high cost. A kind of ground thermal response tester using heating cable was designed to solve the above problems. Taking a borehole heat exchanger in Hanyang District of Wuhan City as research object, the conventional thermal response test, thermal response and thermal recovery tests using heating cable were carried out respectively, and the measurements of each test were analyzed by the infinite line source model and thermal superposition principle. The results reveal that the thermal recovery test using heating cable has higher accuracy, and the difference of the measured ground thermal conductivity is only 0.14 W/(m·K) comparing with conventional thermal response test. It is concluded that the thermal response and thermal recovery tests using heating cable have the advantages of low cost, simple and easy operation, and can obtain the ground thermal conductivities at different depth.

关键词

地源热泵 / 导热系数 / 电加热 / 热响应试验 / 热恢复试验 / 线热源理论

Key words

ground source heat pumps / thermal conductivity / electric heating / thermal response test / thermal recovery test / line heat source theory

引用本文

导出引用
关鹏, 沈振强, 段新胜, 焦玉勇. 基于加热电缆的地源热泵岩土导热系数测试与验证研究[J]. 太阳能学报. 2025, 46(1): 328-334 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1527
Guan Peng, Shen Zhenqiang, Duan Xinsheng, Jiao Yuyong. TEST AND VERIFICATION OF THERMAL CONDUCTIVITY OF GROUND SOURCE HEAT PUMP ROCK AND SOIL BASED ON HEATING CABLE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 328-334 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1527
中图分类号: TU83   

参考文献

[1] BANKS D.An introduction to thermogeology ground source heating and cooling[M]. 2nd ed. West Sussex: Wiley-Blackwell, 2012.
[2] KAVANAUGH S P, RAFFERTY K D.Geothermal heating and cooling: design of ground-source heat pump systems[M]. Atlanta, US: ASHRAE, 2014.
[3] 刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统试验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150.
LIU J, CAI W L, WANG F H, et al.Deep ground source heat pump system test research and pipe well structure optimization[J]. Journal of engineering thermophysics, 2019, 40(9): 2143-2150.
[4] GEHLIN S.Thermal response test: method development and evaluation[D]. Sweden: Lulea University of Technology, 2002.
[5] SPITLER J D, BERNIER M.Vertical bore hole ground heat exchanger design methods[J]. Advances in ground source heat pump systems, 2016(2): 29-61.
[6] MOGENSEN P.Fluid to duct wall heat transfer in duct system heat storages[C]//In Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 1983.
[7] 于明志, 方肇洪. 现场测量深层岩土热物性方法[J]. 工程热物理学报, 2002, 23(3): 354-356.
YU M Z, FANG Z H.A method for in situ determining the thermal properties of deep ground[J]. Journal of engineering thermophysics, 2002, 23(3): 354-356.
[8] WILKE S, MENBERG K, STEGER H, et al.Advanced thermal response tests: a review[J]. Renewable and sustainable energy reviews, 2020, 119: 109575.
[9] ACUÑA J, PALM B. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers[J]. Applied energy, 2013, 109(2013): 312-320.
[10] MCDANIEL A, TINJUM J, HART D J, et al.Distributed thermal response test to analyze thermal properties in heterogeneous lithology[J]. Geothermics, 2018, 76: 116-124.
[11] FUJII H, OKUBO H, NISHI K, et al.An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers[J]. Geothermics, 2009, 38(4): 399-406.
[12] ACUÑA J, MOGENSEN P, PALM B. Distributed thermal response tests on a multi-pipe coaxial borehole heat exchanger[J]. HVAC&R research, 2011, 17(6): 1012-1029.
[13] LOVERIDGE F, HOLMES G, POWRIE W, et al.Thermal response testing through the Chalk aquifer in London, UK[J]. Proceedings of the institution of civil engineers geotechnical engineering, 2013, 166(GE2):197-210.
[14] RAYMOND J, LAMARCHE L, MALO M.Field demonstration of a first thermal response test with a low power source[J]. Applied energy, 2015, 147: 30-39.
[15] RAYMOND J, LAMARCHE L.Development and numeric validation of a novel thermal response test with a low power source[J]. Geothermics, 2014, 51: 434-444.
[16] 段新胜, 顾湘, 林浩欣, 等. 热响应试验后的热恢复试验理论与应用研究[J]. 太阳能学报, 2017, 38(8): 2317-2322.
DUAN X S, GU X, LIN H X, et al.Theory and application study of thermal recovery test after thermal response test[J]. Acta energiae solaris sinica, 2017, 38(8): 2317-2322.
[17] 李鹏, 郑雨, 李杭哲, 等. 对岩土热响应试验的回顾与展望[J]. 暖通空调, 2019, 49(5): 27-33.
LI P, ZHENG Y, LI H Z, et al.Review and prospect of rock and soil thermal response tests[J]. Heating ventilating & air conditioning, 2019, 49(5): 27-33.
[18] HUANG Y B, ZHANG Y J, XIE Y Y, et al.Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test[J]. Journal of cleaner production, 2021, 278: 123396.
[19] SPITLER J D, GEHLIN S E A. Thermal response testing for ground source heat pump systems—an historical review[J]. Renewable and sustainable energy reviews, 2015, 50: 1125-1137.
[20] 张也, 骆祖江, 杜建国, 等. 基于热平衡原理的地埋管地源热泵系统开发利用潜力评价[J]. 太阳能学报, 2022, 43(9): 444-452.
ZHANG Y, LUO Z J, DU J G, et al.Potential evaluation of development and utilization of ground source heat pump system based on heat balance principle[J]. Acta energiae solaris sinica, 2022, 43(9): 444-452.
[21] 苏华, 聂伟伟, 李茜, 等. 地源热泵竖埋管换热器热工参数反演方法研究[J]. 太阳能学报, 2023, 44(10): 481-487.
SU H, NIE W W, LI Q, et al.Research on thermal parameter inversion method for vertical borehole heat exchanger of ground source heat pump[J]. Acta energiae solaris sinica, 2023, 44(10): 481-487.
[22] PU L, QI D, LI K, et al.Simulation study on the thermal performance of vertical U-tube heat exchangers for ground source heat pump system[J]. Applied thermal engineering, 2015, 79: 202-221.
[23] 高蓬辉, 纪绍斌, 周国庆, 等. 地层储放能过程中温度场演化规律的实验研究[J]. 太阳能学报, 2013, 34(11): 1916-1923.
GAO P H, JI S B, ZHOU G Q, et al.Experimental research on temperature of underground soil in the process of storage and release[J]. Acta energiae solaris sinica, 2013, 34(11): 1916-1923.
[24] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(增刊1): 246-254.
ZHOU X Y, SUN D A, LUO T.Semi-analytical study on near-field temperature of nuclear waste repository[J]. Rock and soil mechanics, 2020, 41(Sup 1): 246-254.
[25] 马瑾, Benoit Lamy-Chappuis, 胥蕊娜, 等. 地质封存过程中饱和二氧化碳水溶液在岩心中矿化反应研究[J]. 工程热物理学报, 2015, 36(3): 627-630.
MA J, LAMY-CHAPPUIS B, XU R N, et al.Alteration of calcareous sandstone due to chemical reaction with injected carbon dioxide[J]. Journal of engineering thermophysics, 2015, 36(3): 627-630.
[26] 韩二帅, 李奉翠, 梁磊, 等. 地质参数对中深层地热井长期取热特性影响分析[J]. 太阳能学报, 2022, 43(2): 62-68.
HAN E S, LI F C, LIANG L, et al.Effects of geological parameters on long-term thermal extraction characteristics of medium-deep geothermal well[J]. Acta energiae solaris sinica, 2022, 43(2): 62-68.

基金

国家重大科研仪器研制项目(42227805); 国家自然科学基金重点项目(41731284); 岩土钻掘与防护教育部工程研究中心开放研究基金(202311)

PDF(1437 KB)

Accesses

Citation

Detail

段落导航
相关文章

/