基于能量重构的构网型储能VSG有功振荡阻尼策略

石荣亮, 兰才华, 董政, 于雁南, 钟志贤

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 300-308.

PDF(1903 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1903 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 300-308. DOI: 10.19912/j.0254-0096.tynxb.2023-1531

基于能量重构的构网型储能VSG有功振荡阻尼策略

  • 石荣亮1, 兰才华1, 董政2, 于雁南1, 钟志贤1
作者信息 +

ACTIVE POWER OSCILLATION DAMPING STRATEGY BASED ON ENERGY RESHAPING FOR GRID-FORMING ENERGY-STORAGE VSG

  • Shi Rongliang1, Lan Caihua1, Dong Zheng2, Yu Yannan1, Zhong Zhixian1
Author information +
文章历史 +

摘要

建立GEVSG并网有功-功角的动态等效电路模型,从电路能量流动的角度揭示GEVSG在不同扰动下存在有功振荡的原因,提出一种基于能量重构机理的GEVSG有功振荡阻尼策略,并给出基于二阶等效降阶控制模型的参数设计方法。搭建100 kVA GEVSG并网系统的Matlab仿真模型与实验测试平台,并利用仿真与实验对比结果共同验证了所述控制方法的可行性与有效性。

Abstract

The dynamic equivalent circuit model of GEVSG grid-connected active power-angle is established, and the reason of GEVSG active power oscillations under different disturbances is revealed from the perspective of circuit energy flow. An active power oscillation damping strategy based on energy reshaping mechanism for GEVSG is proposed, and the parameter design method is given according to the second-order equivalent reduced-order control model. Both the Matlab simulation and experimental test platforms of a 100 kVA GEVSG grid-connected system are established, and the feasibility and effectiveness of the proposed control strategy are verified by using the simulation and experimental comparison results.

关键词

虚拟同步发电机 / 有功振荡 / 电路模型 / 能量重构 / 阻尼策略 / 参数设计

Key words

virtual synchronous generator / active power oscillation / circuit model / energy reshaping / damping strategy / parameter design

引用本文

导出引用
石荣亮, 兰才华, 董政, 于雁南, 钟志贤. 基于能量重构的构网型储能VSG有功振荡阻尼策略[J]. 太阳能学报. 2025, 46(1): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1531
Shi Rongliang, Lan Caihua, Dong Zheng, Yu Yannan, Zhong Zhixian. ACTIVE POWER OSCILLATION DAMPING STRATEGY BASED ON ENERGY RESHAPING FOR GRID-FORMING ENERGY-STORAGE VSG[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1531
中图分类号: TM712   

参考文献

[1] XU H Z, YU C Z, LIU C, et al.An improved virtual inertia algorithm of virtual synchronous generator[J]. Journal of modern power systems and clean energy, 2020, 8(2): 377-386.
[2] LI C, YANG Y Q, MIJATOVIC N, et al.Frequency stability assessment of grid-forming VSG in framework of MPME with feedforward decoupling control strategy[J]. IEEE transactions on industrial electronics, 2022, 69(7): 6903-6913.
[3] 石荣亮, 王斌, 黄冀, 等. 储能虚拟同步机的并网阻尼特性分析与改进策略[J]. 太阳能学报, 2023, 44(7): 30-38.
SHI R L, WANG B, HUANG J, et al.Analysis and improvement strategy of grid-connected damping characteristics of energy storage virtual synchronous machine[J]. Acta energiae solaris sinica, 2023, 44(7): 30-38.
[4] 石荣亮, 兰才华, 王国斌, 等. 基于有功前馈补偿的储能VSG并网有功振荡抑制策略[J]. 电力系统保护与控制, 2023, 51(14): 118-126.
SHI R L, LAN C H, WANG G B, et al.Active power oscillation suppression strategy for VSG grid-connected energy storage based on active power feedforward compensation[J]. Power system protection and control, 2023, 51(14): 118-126.
[5] CHEN M, ZHOU D, BLAABJERG F.Enhanced transient angle stability control of grid-forming converter based on virtual synchronous generator[J]. IEEE transactions on industrial electronics, 2022, 69(9): 9133-9144.
[6] LIU J, MIURA Y, BEVRANI H, et al.A unified modeling method of virtual synchronous generator for multi-operation-mode analyses[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 2394-2409.
[7] ALIPOOR J, MIURA Y, ISE T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(2): 451-458.
[8] THOMAS V, KUMARAVEL S, ASHOK S.Fuzzy controller-based self-adaptive virtual synchronous machine for microgrid application[J]. IEEE transactions on energy conversion, 2021, 36(3): 2427-2437.
[9] SHI R L, ZHANG X, HU C, et al.Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids[J]. Journal of modern power systems and clean energy, 2018, 6(3): 482-494.
[10] 王晓东, 曹国胜, 刘颖明, 等. 双馈风电机组动态虚拟惯量和阻尼模糊自适应控制策略研究[J]. 太阳能学报, 2023, 44(9): 356-365.
WANG X D, CAO G S, LIU Y M, et al.Research on fuzzy adaptive control strategy of dynamic virtual inertia and damping of doubly-fed wind turbine[J]. Acta energiae solaris sinica, 2023, 44(9): 356-365.
[11] REN M W, LI T, SHI K, et al.Coordinated control strategy of virtual synchronous generator based on adaptive moment of inertia and virtual impedance[J]. IEEE journal on emerging and selected topics in circuits and systems, 2021, 11(1): 99-110.
[12] 张赟宁, 谢永辉, 张磊, 等. 自适应调节有功功率偏差的虚拟同步发电机暂态控制策略[J]. 电机与控制学报, 2024, 28(8): 104-114.
ZHANG Y N, XIE Y H, ZHANG L, et al.Transient control strategy of virtual synchronous generator withadaptive regulation of active power deviation[J]. Electric machines and control, 2024, 28(8): 104-114.
[13] MO O, D'ARCO S, SUUL J A. Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models[J]. IEEE transactions on industrial electronics, 2017, 64(7): 5952-5962.
[14] FANG J Y, LIN P F, LI H C, et al.An improved virtual inertia control for three-phase voltage source converters connected to a weak grid[J]. IEEE transactions on power electronics, 2019, 34(9): 8660-8670.
[15] DONG D, WEN B, BOROYEVICH D, et al.Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions[J]. IEEE transactions on industrial electronics, 2015, 62(1): 310-321.
[16] HUANG L B, XIN H H, WANG Z.Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines[J]. IEEE transactions on power electronics, 2019, 34(6): 5803-5818.
[17] YANG M L, WANG Y, XIAO X Y, et al.A robust damping control for virtual synchronous generators based on energy reshaping[J]. IEEE transactions on energy conversion, 2023, 38(3): 2146-2159.
[18] SHI R L, LAN C H, DONG Z, et al.An active power dynamic oscillation damping method for the grid-forming virtual synchronous generator based on energy reshaping mechanism[J]. Energies, 2023, 16(23): 7723.
[19] XIONG X L, WU C, CHENG P, et al.An optimal damping design of virtual synchronous generators for transient stability enhancement[J]. IEEE transactions on power electronics, 2021, 36(10): 11026-11030.
[20] SUN P, YAO J, ZHAO Y, et al.Stability assessment and damping optimization control of multiple grid-connected virtual synchronous generators[J]. IEEE transactions on energy conversion, 2021, 36(4): 3555-3567.
[21] CHEN M, ZHOU D, BLAABJERG F.Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system[J]. IEEE transactions on power electronics, 2021, 36(8): 9501-9510.
[22] YU Y, CHAUDHARY S K, TINAJERO G D A, et al. A reference-feedforward-based damping method for virtual synchronous generator control[J]. IEEE transactions on power electronics, 2022, 37(7): 7566-7571.
[23] SHI R L, LAN C H, HUANG J, et al.Analysis and optimization strategy of active power dynamic response for VSG under a weak grid[J]. Energies, 2023, 16(12): 4593.
[24] LI M X, YU P, HU W H, et al.Phase feedforward damping control method for virtual synchronous generators[J]. IEEE transactions on power electronics, 2022, 37(8): 9790-9806.
[25] SEMLYEN A.Analysis of disturbance propagation in power systems based on a homogeneoue dynamic model[J]. IEEE transactions on power apparatus and systems, 1974, 93(2): 676-684.
[26] 石荣亮, 张群英, 王国斌, 等. 提高储能VSG并网有功响应性能的暂态阻尼策略[J]. 电力自动化设备, 2024, 44(1): 134-140.
SHI R L, ZHANG Q Y, WANG G B, et al.Transient damping strategy to improve the active response performance of energy storage VSG grid-connected[J]. Electric power automation equipment, 2024, 44(1): 134-140.

基金

国家自然科学基金(52467022); 广西自然科学基金(2021GXNSFAA220038)

PDF(1903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/