气动双弹片对垂直轴风力机气动性能影响研究

俞洪静, 岳敏楠, 李春, 缪维跑, 王培麟, 黄浩达

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 25-33.

PDF(2730 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2730 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 25-33. DOI: 10.19912/j.0254-0096.tynxb.2023-1537

气动双弹片对垂直轴风力机气动性能影响研究

  • 俞洪静, 岳敏楠, 李春, 缪维跑, 王培麟, 黄浩达
作者信息 +

STUDY ON INFLUENCE OF AERODYNAMIC DOUBLE FLAPS ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE

  • Yu Hongjing, Yue Minnan, Li Chun, Miao Weipao, Wang Peilin, Huang Haoda
Author information +
文章历史 +

摘要

针对叶片流动分离导致垂直轴风力机气动性能下降,基于鸟类羽毛随阵风轻微抬起维持气流在其外翼再附着的特点,在叶片两侧加装气动弹片,通过计算流体动力学方法研究其对垂直轴风力机的作用机理以及对其气动性能的影响,并基于动态模态分解对比分析气动弹片作用下垂直轴风力机尾迹流场模态特征。结果表明:气动双弹片可抑制叶片表面流动分离,提升整机气动性能,有效增加流场稳定性;可大幅提升垂直轴风力机叶片瞬时转矩、切向力及翼型吸力面压力系数,且使低尖速比成为最佳尖速比,有效提高自启动性能及运行过程中的稳定性,从而提升垂直轴风力机气动性能,流场动态模态分解表明双弹片有助于抑制尾流涡强度。

Abstract

Aiming at the problem of aerodynamic performance degradation of vertical axis wind turbine caused by blade flow separation, based on the characteristics of bird feathers lifting slightly with gust to maintain the reattachment of airflow on its outer wing, aerodynamic flap is installed on both sides of the blade. The computational fluid dynamics method is used to study its mechanism of action on vertical axis wind turbine and its influence on aerodynamic performance and based on dynamic mode decomposition, the modal characteristics of wake flow field of vertical axis wind turbine under the action of pneumatic shrapnel are compared and analyzed. In terms of instantaneous torque, the aerodynamic double flaps significantly increase the tangential force of the vertical axis wind turbine blade and the pressure coefficient of the airfoil suction surface. At the same time, the low tip speed ratio becomes the best tip speed ratio become the best tip speed ratio, which improves the self-starting performance and stability in the operation process, thus improving the aerodynamic performance of the vertical axis wind turbine, the dynamic mode decomposition of the flow field shows that the double spring is helpful to suppress the wake vortex intensity.

关键词

垂直轴风力机 / 气动性能 / 流动分离 / 计算流体动力学 / 气动双弹片

Key words

vertical axis wind turbines / aerodynamic performance / flow separation / computational fluid dynamics / aerodynamic double flaps

引用本文

导出引用
俞洪静, 岳敏楠, 李春, 缪维跑, 王培麟, 黄浩达. 气动双弹片对垂直轴风力机气动性能影响研究[J]. 太阳能学报. 2025, 46(1): 25-33 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1537
Yu Hongjing, Yue Minnan, Li Chun, Miao Weipao, Wang Peilin, Huang Haoda. STUDY ON INFLUENCE OF AERODYNAMIC DOUBLE FLAPS ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 25-33 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1537
中图分类号: TK83   

参考文献

[1] REZAEIHA A, MONTAZERI H, BLOCKEN B.Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters[J]. Energy conversion and management, 2018, 169: 45-77.
[2] SHUKLA V, KAVITI A.Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models[J]. Energy, 2017, 126: 766-795.
[3] LUIS S, MANUEL J O F, MARÍA K D A, et al. Novel methodology for performance characterization of vertical axis wind turbines (VAWT) prototypes through active driving mode[J]. Energy conversion and management, 2022, 258: 115530.
[4] BALDUZZI F, BIANCHINI A, CARNEVALE A E, et al.Feasibility analysis of a darrieus vertical-axis wind turbine installation in the rooftop of a building[J]. Applied energy, 2012, 97: 921-929.
[5] SATYAJIT K D, HIMADRI C.A review of augmentation methods to enhance the performance of vertical axis wind turbine[J]. Sustainable energy technologies and assessments, 2022, 53: 102469.
[6] TJIU W, MARNOTO T, MAT S, et al.Darrieus vertical axis wind turbine for power generation Ⅱ: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development[J]. Renewable energy, 2015, 75: 560-571.
[7] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
[8] ZHU H T, HAO W X, LI C, et al.A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine[J]. Energy, 2018, 165: 12-25.
[9] CAI J X, XUN Z G.Numerical study on drag reduction by micro-blowing/suction compounding flow control on supercritical airfoil[J]. Procedia engineering, 2015, 99: 613-617.
[10] SASSON B, GREENBLATT D.Effect of leading-edge slot blowing on a vertical axis wind turbine[J]. AIAA journal, 2012, 49(9): 1932-1942.
[11] 罗帅, 缪维跑, 李春, 等. 基于定常吸气的垂直轴风力机流动控制研究[J]. 中国电机工程学报, 2020, 40(21): 7078-7087.
LUO S, MIAO W P, LI C, et al.Research on flow control of vertical axis wind turbine based on steady suction[J]. Proceedings of the CSEE, 2020, 40(21): 7078-7087.
[12] 刘青松, 陈福东, 李春, 等. 柔性弹片控制翼型流动分离的流固耦合研究[J]. 中国电机工程学报, 2020, 40(6): 1954-1963.
LIU Q S, CHEN F D, LI C, et al.Study on fluid-structure interaction for flow separation control of airfoil with flexible flap[J]. Proceedings of the CSEE, 2020, 40(6): 1954-1963.
[13] SOBHANI E, GHAFFARI M, MAGHREBI J M.Numerical investigation of dimple effects on Darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241.
[14] PAPE L A, COSTES M, RICHEZ F, et al.Dynamic stall control using deployable leading-edge vortex generators[J]. AIAA journal, 2012, 50(10): 2135-2145.
[15] BELAMADI R, DJEMILI A, ILINCA A, et al.Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2016, 151: 79-99.
[16] BRAMESFELD G, MAUGHMER M D.Experimental investigation of self-actuating, upper-surface, high-lift-enhancing effectors[J]. Journal of aircraft, 2002, 39(1): 120-124.
[17] HAFIEN C, MBAREK B T.Reduced order model for the lift coefficient of an airfoil equipped with extrados and/or trailing edge flexible flaps[J]. Computers and fluids, 2019, 180: 82-95.
[18] FAVIER J, LI C, KAMPS L, et al.The PELskin project-part I:fluid-structure interaction for a row of flexible flaps: a reference study in oscillating channel flow[J]. Meccanica, 2017, 52(8): 1767-1780.
[19] TRAUB L W, JAYBUSH L.Experimental investigation of separation control using upper-surface spoilers[J]. Journal of aircraft, 2010, 47(2): 714.
[20] ARIVOLI D, SINGH I.Self-adaptive flaps on low aspect ratio wings at low Reynolds numbers[J]. Aerospace science and technology, 2016, 59: 78-93.
[21] MEYER R, HAGE W, BECHERT W D, et al.Separation control by self-activated movable flaps[J]. AIAA journal, 2012, 45(1): 191-199.
[22] LIU Q S, MIAO W P, LI C, et al.Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT[J]. Energy, 2019, 189: 116271.
[23] 刘青松, 缪维跑, 李春, 等. 气动弹片对垂直轴风力机性能影响研究[J]. 热能动力工程, 2020, 35(6): 216-223.
LIU Q S, MIAO W P, LI C, et al.Investigation on the influence of aerodynamic flap on the performance of vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2020, 35(6): 216-223.
[24] MOHAMED M H.Performance investigation of H-rotor darrieus turbine with new airfoil shapes[J]. Energy, 2012, 47(1): 522-530.
[25] 欧华浩, 叶舟, 刘青松, 等. 伸缩式斜柱对垂直轴风力机气动性能影响研究[J]. 太阳能学报, 2023, 44(5): 376-383.
OU H H, YE Z, LIU Q S, et al.Study on effect of telescopic inclined columns on aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(5): 376-383.
[26] 朱海天, 李春, 郝文星, 等. 襟翼翼缝结构改进设计控制流动分离的数值研究[J]. 热能动力工程, 2018, 33(9): 120-125, 92.
ZHU H T, LI C, HAO W X, et al.Numerical investigation on flap gap configuration modification to control flow separation[J]. Journal of engineering for thermal energy and power, 2018, 33(9): 120-125, 92.
[27] GHARALI K, JOHNSON A D.Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied energy, 2012, 93: 45-52.
[28] NAKANO T, FUJISAWA N, OGUMA Y, et al.Experimental study on flow and noise characteristics of NACA0018 airfoil[J]. Journal of wind engineering&industrial aerodynamics, 2006, 95(7): 511-531.
[29] 邱静, 王国志, 李玉辉. 基于STAR-CCM+的简单流体模型CFD研究[J]. 液压气动与密封, 2010, 30(10): 8-10.
QIU J, WANG G Z, LI Y H.A simple fluid model for CFD research based on STAR-CCM+[J]. Hydraulics pneumatics & seals, 2010, 30(10): 8-10.
[30] 王培麟, 刘青松, 缪维跑, 等. 尾缘非定常射流襟翼对垂直轴风力机气动特性影响研究[J]. 太阳能学报, 2022, 43(9): 242-250.
WANG P L, LIU Q S, MIAO W P, et al.Research on effect of trailing edge jet flap on aerodynamic characteristics of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 242-250.
[31] GU H B, STANSBY P, STALLARD T, et al.Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water[J]. Journal of fluids and structures, 2018, 82: 343-356.
[32] 程谦. 螺旋式垂直轴风力机数值计算研究[D]. 上海: 上海交通大学, 2017.
CHENG Q.Numerical simulation of helical vertical axis wind turbine[D]. Shanghai: Shanghai Jiao Tong University, 2017.
[33] CASTELLI M R, ARDIZZON G, BATTISTI L, et al.Modeling Strategy and Numerical validation for a darrieus vertical axis micro-wind turbine[C]//ASME International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada. 2012: 409-418.
[34] 刘鹏寅, 陈进格, 沈昕, 等. 深度动态失速流场的DMD分析[J]. 太阳能学报, 2018, 39(9): 2477-2485.
LIU P Y, CHEN J G, SHEN X, et al.DMD analysis of low field under deep dynamic stall condition[J]. Acta energiae solaris sinica, 2018, 39(9): 2477-2485.
[35] 田甜, 孙翀, 竺晓程, 等. 垂直轴风力机尾迹的时空特性[J]. 动力工程学报, 2023, 43(3): 341-348, 371.
TIAN T, SUN C, ZHU X C, et al.The Spatial-temporal Evolution of the vertical axis wind turbines wake[J]. Journal of Chinese Society of Power Engineering, 2023, 43(3): 341-348, 371.

基金

国家自然科学基金(52476212; 52376204; 52375193); 上海市Ⅳ类高峰学科-能源科学与技术-上海非碳基能源转换与利用研究院建设项目

PDF(2730 KB)

Accesses

Citation

Detail

段落导航
相关文章

/