基于Holt-Winters的锂离子电池容量衰退预测

吴伟丽, 卢双双, 李磊

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 309-318.

PDF(1254 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1254 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 309-318. DOI: 10.19912/j.0254-0096.tynxb.2023-1550

基于Holt-Winters的锂离子电池容量衰退预测

  • 吴伟丽1,2, 卢双双1,2, 李磊1,2
作者信息 +

HOLT-WINTERS BASED PREDICTION OF LITHIUM-ION BATTERY CAPACITY FADING

  • Wu Weili1,2, Lu Shuangshuang1,2, Li Lei1,2
Author information +
文章历史 +

摘要

针对目前电池容量长期衰退趋势预测方法精度低、跟踪效果差的问题,提出一种基于序列分解和三次指数平滑的电池容量预测方法,实现电池容量快速下降阶段退化趋势的有效跟踪。对于具有容量回升现象的电池容量序列首先采用自适应白噪声完备集成经验模态分解(CEEMDAN)将其分解为波动分量和趋势分量,再对各分量分别搭建霍尔特-温特斯(Holt- Winters)季节性、线性模型进行预测,最后将预测结果叠加实现容量退化趋势预测;对容量回升现象较弱的容量序列直接搭建Holt-Winters无季节性模型进行预测。采用多种不同电池退化数据集对算法性能进行验证,结果表明所提方法的鲁棒性良好且预测精度有较大提升,可为锂离子电池容量的退化趋势预测提供技术参考。

Abstract

Aiming at the problem of low accuracy and poor tracking effect of the current battery capacity long-term decline trend prediction method, a battery capacity prediction method based on sequence decomposition and cubic exponential smoothing is proposed, which realizes the effective tracking of the degradation trend in the rapid decline stage of battery capacity. For the battery capacity sequence with capacity recovery phenomenon, firstly, the adaptive white noise complete ensemble empirical mode decomposition (CEEMDAN) is used to decompose it into fluctuation component and trend component, and then Holt-Winters seasonal and linear models are built for each component to predict. Finally, the prediction results are superimposed to realize the capacity degradation trend prediction. The Holt-Winters non-seasonal model is directly built to predict the capacity sequence with weak capacity recovery. A variety of different battery degradation datasets are used to verify the performance of the algorithm. The results show that the proposed method has good robustness and the prediction accuracy is greatly improved, which provides a technical reference for the prediction of the degradation trend of lithium-ion battery capacity.

关键词

锂离子电池 / 容量预测 / 经验模态分解 / Holt-Winters

Key words

lithium-ion battery / capacity prediction / empirical mode decomposition / Holt-Winters

引用本文

导出引用
吴伟丽, 卢双双, 李磊. 基于Holt-Winters的锂离子电池容量衰退预测[J]. 太阳能学报. 2025, 46(1): 309-318 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1550
Wu Weili, Lu Shuangshuang, Li Lei. HOLT-WINTERS BASED PREDICTION OF LITHIUM-ION BATTERY CAPACITY FADING[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 309-318 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1550
中图分类号: TM912.9   

参考文献

[1] 李培强, 李雄, 蔡笋, 等. 风电场含退役动力电池的混合储能系统容量优化配置[J]. 太阳能学报, 2022, 43(5): 492-498.
LI P Q, LI X, CAI S, et al.Capacity optimization configuration of hybrid energy storage system with retired power batteries in wind farms[J]. Acta energiae solaris sinica, 2022, 43(5): 492-498.
[2] 贾东卫, 任永峰, 李莉美, 等. 基于集合经验模态分解的微电网混合储能优化配置[J]. 太阳能学报, 2023, 44(2): 239-246.
JIA D W, REN Y F, LI L M, et al.Research on optimization of hybrid energy storage capacity using ensemble empirical mode decomposition and fuzzy control[J]. Acta energiae solaris sinica, 2023, 44(2): 239-246.
[3] XU J Y, ZHEN A G, CAI Z D, et al.State of health diagnosis and remaining useful life prediction of lithium-ion batteries based on multi-feature data and mechanism fusion[J]. IEEE access, 2021, 9: 85431-85441.
[4] DING G R, WANG W B, ZHU T.Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU[J]. IEEE access, 2022, 10: 89402-89413.
[5] 李金东, 古月圆, 王路阳, 等. 退役锂离子电池健康状态评估方法综述[J]. 储能科学与技术, 2019, 8(5): 807-812.
LI J D, GU Y Y, WANG L Y, et al.Review on state of health estimation of retired lithium-ion batteries[J]. Energy storage science and technology, 2019, 8(5): 807-812.
[6] CHEN Z, CHEN L Q, SHEN W J, et al.Remaining useful life prediction of lithium-ion battery via a sequence decomposition and deep learning integrated approach[J]. IEEE transactions on vehicular technology, 2022, 71(2): 1466-1479.
[7] JI Y J, QIU S L, LI G.Simulation of second-order RC equivalent circuit model of lithium battery based on variable resistance and capacitance[J]. Journal of Central South University, 2020, 27(9): 2606-2613.
[8] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
HUANG K, DING H, GUO Y F, et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
[9] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[10] 王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报, 2021, 41(4): 1445-1457.
WANG Y Z, NI Y L, ZHENG Y Q, et al.Remaining useful life prediction of lithium-ion batteries based on support vector regression optimized and ant lion optimizations[J]. Proceedings of the CSEE, 2021, 41(4): 1445-1457
[11] 张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1): 138-144.
ZHANG X F, YAO M M, WANG Z Y, et al.Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy storage science and technology, 2020, 9(1): 138-144.
[12] 戴海峰, 姜波, 魏学哲, 等.基于充电曲线特征的锂离子电池容量估计[J]. 机械工程学报, 2019, 55(20): 52-59.
DAI H F, JIANG B, WEI X Z, et al.Capacity estimation of lithium-ion batteries based on charging curve features[J]. Journal of mechanical engineering, 2019, 55(20): 52-59.
[13] 齐昊明. 基于深度学习的锂电池剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
QI H M.Research on prediction method of remaining life of lithium battery based on deep learning[D]. Harbin: Harbin Institute of Technology, 2019.
[14] HAN X B, LU L G, ZHENG Y J, et al.A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
[15] GREENBANK S, HOWEY D.Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life[J]. IEEE transactions on industrial informatics, 2022, 18(5): 2965-2973.
[16] 史永胜, 施梦琢, 丁恩松, 等. 基于CEEMDAN-LSTM组合的锂离子电池寿命预测方法[J]. 工程科学学报, 2021, 43(7): 985-994.
SHI Y S, SHI M Z, DING E S, et al.Combined prediction method of lithium-ion battery life based on CEEMDAN-LSTM[J]. Chinese journal of engineering, 2021, 43(7): 985-994.
[17] 胡凯. 基于Holt-Winters模型的天然气负荷预测[J]. 技术与市场, 2020, 27(7): 31-33.
HU K.Natural gas load forecasting based on Holt-Winters model[J]. Technology and market, 2020, 27(7): 31-33.
[18] SEVERSON K A, ATTIA P M, JIN N, et al.Data-driven prediction of battery cycle life before capacity degradation[J]. Nature energy, 2019, 4: 383-391.

基金

国家电网科技项目(SGXJCJ00KJJS2100582); 合肥市关键共性技术研发项目(2021GJ039); 陕西省教育厅自然科学专项(17JK0503)

PDF(1254 KB)

Accesses

Citation

Detail

段落导航
相关文章

/