为实现可再生能源的高比例消纳和控制温室气体排放,以包含光伏和氢储的“冷-热-电”联供系统为研究对象,针对传统的耦合光氢的冷热电联供系统管控存在的配置和运行割裂问题,在对系统进行仿真建模的基础上,构建系统配置和运行交互关联的双层优化模型,使用KKT条件对其进行求解,最终生成了系统的最优供能策略,表现出良好的经济性。此外,多余的电力转化为氢气形式储能,有助于提升能源利用效率。
Abstract
In order to realize the high proportion absorption of renewable energy and the effective control greenhouse gas emission, in this study, taking the combined cooling, heating and power (CCHP) system with photovoltaic and hydrogen energy storage as the research object, aimed at the separate status between the system configuration and operation that exists in traditional coupled photovoltaic-hydrogen CCHP system control, based on the simulation modeling of the system, a two-layer optimization model is constructed for the interaction between the configuration and operation of the system. The KKT (Karush-Kuhn-Tucker) condition was used to solve this optimization model, leading to the optimal energy supply strategy was generated, which shows good economy. In addition, the conversion of excess power into energy storage in the form of hydrogen helps to improve the energy utilization efficiency.
关键词
太阳能 /
制氢 /
冷热电联供系统 /
双层优化模型 /
KKT条件
Key words
solar energy /
hydrogen production /
CCHP system /
bi-level optimization model /
KKT condition
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 庄贵阳. 我国实现“双碳” 目标面临的挑战及对策[J]. 人民论坛, 2021(18): 50-53.
ZHUANG G Y.Challenges and countermeasures to achieve the “dual carbon” target in China[J]. People's tribune, 2021(18): 50-53.
[2] 孙思宇, 于成琪, 孙涛, 等. 冷热电三联供分布式能源系统研究进展[J]. 华电技术, 2019, 41(11): 26-31, 56.
SUN S Y, YU C Q, SUN T, et al.Advance in study on CCHP distributed energy system[J]. Huadian technology, 2019, 41(11): 26-31, 56.
[3] VON STACKELBERG H.Marktform und Gleichgewicht[M]. Wien und Berlin: J. Springer, 1934.
[4] BRACKEN J, MCGILL J T.Mathematical programs with optimization problems in the constraints[J]. Operations research, 1973, 21(1): 37-44.
[5] 陈义忠. 基于非常规能源的水-能耦合系统模拟评估与多层决策[D]. 北京: 华北电力大学, 2019.
CHEN Y Z.Water-energy nexus simulation and multi-level decision making for alternative energy[D]. Beijing: North China Electric Power University, 2019.
[6] 朱志莹, 郭杰, 于国强, 等. 风光接入下储能系统双层优化模型[J]. 太阳能学报, 2022, 43(10): 443-451.
ZHU Z Y, GUO J, YU G Q, et al.Bi-layer optimization model for energy storage systems under wind and PV access[J]. Acta energiae solaris sinica, 2022, 43(10): 443-451.
[7] 郑焕坤, 曾凡斐, 傅钰, 等. 基于E-C-K-均值聚类和SOP优化的分布式电源双层规划[J]. 太阳能学报, 2022, 43(2): 127-135.
ZHENG H K, ZENG F F, FU Y, et al.Bi-level distributed power planning based on E-C-K-means clustering and SOP optimization[J]. Acta energiae solaris sinica, 2022, 43(2): 127-135.
[8] 王磊, 王昭, 冯斌, 等. 基于双层优化模型的风-光-储互补发电系统优化配置[J]. 太阳能学报, 2022, 43(5): 98-104.
WANG L, WANG Z, FENG B, et al.Optimal configuration of wind-photovoltaic-ESS complementary power generation system based on bi-level optimization model[J]. Acta energiae solaris sinica, 2022, 43(5): 98-104.
[9] ZHANG K S, FENG P J, ZHANG G, et al.The bi-level optimal configuration model of the CCHP system based on the improved FCM clustering algorithm[J]. Processes, 2021, 9(6): 907.
[10] LI K, WEI X G, YAN Y, et al.Bi-level optimization design strategy for compressed air energy storage of a combined cooling, heating, and power system[J]. Journal of energy storage, 2020, 31: 101642.
[11] 杨晓辉, 宋曜任, 陈再星, 等. 综合需求响应对冷热电联供系统规划运行的影响分析[J]. 实验室研究与探索, 2021, 40(9): 109-113.
YANG X H, SONG Y R, CHEN Z X, et al.Effect analysis of integrated demand response on the planning and operation of cooling and heating power systems[J]. Research and exploration in laboratory, 2021, 40(9): 109-113.
[12] 刘天杰, 焦文玲, 刘媛媛. 严寒地区双层优化模型的冷热电三联供系统优化研究[J]. 城市燃气, 2021(增刊1): 3-10.
LIU T J, JIAO W L, LIU Y Y.Optimization study of cold, heat and power cogeneration system with two-layer optimization model in severe cold region[J]. Urban gas, 2021(S1): 3-10.
[13] 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45(10): 3822-3832.
WU S J, LI Q, LIU J K, et al.Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power system technology, 2021, 45(10): 3822-3832.
[14] HU G P, CHEN C, LU H T, et al.A review of technical advances, barriers, and solutions in the power to hydrogen (P2H) roadmap[J]. Engineering, 2020, 6(12): 1364-1380.
[15] 于丽芳, 李燕雪, 朱明晞, 等. 电-氢-碳综合能源系统协同经济调度[J]. 电力需求侧管理, 2022, 24(6): 63-69.
YU L F, LI Y X, ZHU M X, et al.Coordinated economic dispatch of electricity-hydrogen-carbon integrated energy system[J]. Power demand side management, 2022, 24(6): 63-69.
[16] 姜爱华, 钱朝飞, 黄银燕, 等. 计及含氢储能与电价型需求响应的能量枢纽日前经济调度[J]. 供用电, 2022, 39(3): 82-91.
JIANG A H, QIAN C F, HUANG Y Y, et al.The day-ahead economic dispatch of the energy hub for wind power accommodation considering hydrogen storage and price-based demand response[J]. Distribution & utilization, 2022, 39(3): 82-91.
[17] SONG Y J, MU H L, LI N, et al.Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy[J]. International journal of hydrogen energy, 2022, 47(58): 24533-24547.
[18] LI N, ZHAO X W, SHI X P, et al.Integrated energy systems with CCHP and hydrogen supply: a new outlet for curtailed wind power[J]. Applied energy, 2021, 303: 117619.
[19] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International journal of hydrogen energy, 2013, 38(12): 4901-4934.
[20] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.