为降低温室大棚建筑能耗,以河北省某温室为研究对象,在温室现有的太阳能耦合地源热泵供暖系统(SGSHPH)基础上,设计太阳能-地源热泵相变蓄热供暖系统(SGSHPP-CHSH),利用TRNSYS软件搭建这两种系统的仿真模型,对两系统的仿真结果以及影响因素进行对比分析。研究结果表明:SGSHPP-CHSH系统相比SGSHPH系统在整个供暖季的太阳能集热器集热量提高10.75%;SGSHPP-CHSH系统相变储热罐蓄热温度从49.4 ℃降低到34.4 ℃,热泵机组能耗从10145 kWh降低到7843 kWh,热泵系统的COP从2.68升高到3.36;SGSHPH系统蓄热水箱的供水温度从45 ℃降低到30 ℃,热泵能耗从12837 kWh降低到8739 kWh,热泵机组COP从2.39增加到3.43;SGSHPH系统太阳能集热面积为48 m2时,SGSHPP-CHSH系统太阳能集热面积为39 m2时,此时两供暖系统在非供暖季土壤蓄热量等于在供暖季土壤取热量,可有效维持土壤的热平衡。
Abstract
The research focused on reducing energy consumption in greenhouse buildings by designing a solar-ground source heat pump phase-change heat storage heating system (SGSHPP-CHSH) based on an existing solar-ground source heat pump heating system (SGSHPH) in a greenhouse located in Hebei Province. Simulation models of both systems were built using TRNSYS software, and the simulation results and influencing factors were compared and analyzed. The findings indicate that the solar collector heat collection of the SGSHPP-CHSH is 10.75% higher than that of the SGSHPH throughout the entire heating season. Additionally, the phase change storage tank's temperature decreased from 49.4 ℃ to 34.4 ℃, resulting in reduced energy consumption for the heat pump unit (from 10145 kWh to 7843 kWh) and increased COP of the heat pump system (from 2.68 to 3.36). Similarly, for the SGSHPH, there was a decrease in water supply temperature from 45 ℃ to 30 ℃, reduced energy consumption for the heat pump unit (from 12837 kWh to 8739 kWh), and an increased COP of the unit (from 2.39 to 3.43). Furthermore, When the solar collection area of the SGSHPH is 48 m2, and the solar collection area of the SGSHPP-CHSH is 39 m2, the soil heat storage in both heating systems during non-heating seasons equals to the soil heat extraction during heating seasons, effectively maintaining a balanced thermal state within the soil.
关键词
太阳能 /
热泵系统 /
供暖 /
TRNSYS仿真
Key words
solar energy /
heat pump systems /
heating /
TRNSYS simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021,50(9): 1-10.
HUANG H, LIU R, LI Q, et al.Overview on multi-level utilization techniques of geothermal energy[J]. Thermal power generation, 2021,50(9): 1-10.
[2] 龚赞, 刘益才, 邓炎, 等. 太阳能热泵系统配置形式及其研究进展[J]. 太阳能学报, 2023, 44(4): 506-515.
GONG Z, LIU Y C, DENG Y, et al.Configuration forms and research progress of solar assisted heat pump system[J]. Acta energiae solaris sinica, 2023, 44(4): 506-515.
[3] 张昕宇, 边萌萌, 李博佳, 等. 建筑太阳能热利用技术研究进展与展望[J]. 建筑科学, 2022, 38(10): 268-274.
ZHANG X Y, BIAN M M, LI B J, et al.Research progress and outlook of solar thermal technology in buildings[J]. Building science, 2022, 38(10): 268-274.
[4] 李昊轩. 缓解地源热泵系统土壤热失衡问题技术现状[J]. 区域供热, 2021(1): 23-28, 37.
LI H X.Current situation of technology to alleviate soil thermal imbalance of ground source heat pump system[J]. District heating, 2021(1): 23-28, 37.
[5] 刘广平, 骆超, 邱泽晶, 等. 太阳能-土壤源热泵联合供能系统的研究进展[J]. 制冷与空调, 2017,17(10): 8-15, 65.
LIU G P, LUO C, QIU Z J, et al.Research progress on solar-ground source heat pump combined power system[J]. Refrigeration and air-conditioning, 2017, 17(10): 8-15,65.
[6] 郭海丰, 杨旭升, 李亚鑫. 基于跨季热利用的土壤蓄热发展现状[J]. 智能城市, 2023, 9(3):44-46.
GUO H F, YANG X S, LI Y X.Development status of soil heat storage based on inter-seasonal heat utilization[J]. Intelligent city, 2023, 9(3): 44-46.
[7] ESEN M, YUKSEL T.Experimental evaluation of using various renewable energy sources for heating a greenhouse[J]. Energy and buildings, 2013, 65: 340-351.
[8] 王其良, 周恩泽, 屠丽娟, 等. 基于太阳能补热的多源互补供暖系统优化研究[J]. 太阳能学报, 2021, 42(11): 178-185.
WANG Q L, ZHOU E Z, TU L J, et al.Optimization research on multi-source complementary heating system based on solar heating[J]. Acta energiae solaris sinica,2021, 42(11): 178-185.
[9] 杨震, 陈翔燕, 刘诚, 等. 一种基于BP神经网络的太阳能-土壤源热泵复合系统供暖策略仿真[J]. 太阳能学报, 2022, 43(8): 224-229.
YANG Z, CHEN X Y, LIU C, et al.Simulation on a heating strategy based on BP neural network of solar-ground source heat pump composite system[J]. Acta energiae solaris sinica, 2022, 43(8): 224-229.
[10] 刘艳峰, 宋梦瑶, 周勇, 等. 分区串并联式太阳能-地源热泵跨季节蓄热组合系统性能研究[J]. 太阳能学报, 2021, 42(12): 71-79.
LIU Y F, SONG M Y, ZHOU Y, et al.Research on performance of subarea series-parallel solar assisted ground source heat pump system[J]. Acta energiae solaris sinica, 2021, 42(12): 71-79.
[11] 李兰, 刘志强, 刘佳星. 对一种多能源互补集成系统的运行特性及优化研究[J]. 太阳能学报, 2020, 41(7): 49-56.
LI L, LIU Z Q, LIU J X.Research on operation characteristics and optimization of a multi-energy complementary integrated system[J]. Acta energiae solaris sinica, 2020, 41(7): 49-56.
[12] 刘胜, 梁珍. 采用空气源热泵的温室大棚水蓄热供暖系统模拟研究[J]. 制冷与空调, 2023, 23(4): 15-21.
LIU S, LIANG Z.Simulation of water storage heating system in greenhouse with air source heat pump[J]. Refrigeration and air-conditioning, 2023, 23(4): 15-21.
[13] 张亚磊, 崔海亭, 王晨, 等. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023,12(12): 3789-3798.
ZHANG Y L, CUI H T, WANG C, et al.Research on a phase-change storage heating system of a solar-ground source heat pump based on low current[J]. Energy storage science and technology, 2023, 12(12): 3789-3798.
[14] 丁兴江, 章学来, 徐笑锋, 等. 相变储能技术在现代温室工程加热系统中的应用[J]. 能源研究与利用, 2018(6): 34-38.
DING X J, ZHANG X L, XU X F, et al.Application of phase change energy storage technology in heating system of modern greenhouse engineering[J]. Energy research and utilization, 2018(6): 34-38.
[15] YANG X F, SUN D L, LI J F, et al.Demonstration study on ground source heat pump heating system with solar thermal energy storage for greenhouse heating[J]. Journal of energy storage, 2022, 54: 105298.
基金
河北省重点研发项目(22324501D); 河北省自然科学基金(B2021208017)