为在不提高目标函数维度的前提下,满足实际运行中风力机翼型对于范围攻角综合性能气动性能和设计工况点气动性能兼优的设计需求,提出一种耦合混沌映射及动态协同机制的翼型优化方法。通过Bezier曲线构建翼型几何参数化模型,引入改进的Logistic-Tent混沌映射提高设计空间全局搜索能力,以提升翼型升阻比为设计目标,将动态协同函数嵌入自适应多目标算法,可实现翼型在攻角范围内的气动性能、设计工况点气动性能的优化。经CFD数值验证,优化后翼型在范围攻角内的升力系数平均提升4.6%、7.0%,升阻比平均提升4.2%、7.4%;设计点升阻比提升7.53%、9.19%,证明了方法的可行性。
Abstract
In order to meet the design requirements of wind turbine airfoils in actual operation for both the comprehensive performance aerodynamic performance of the range angle of attack and the aerodynamic performance of the design working conditions without increasing the dimension of the objective function, an airfoil optimization method coupled with chaotic mapping and dynamic cooperation mechanism is proposed. The Bezier curve constructs the geometrical parametric model of the airfoil, the improved Logistic-Tent chaotic mapping applies to enhance the global searching ability of the design space, and the dynamic cooperation function is embedded in the adaptive multi-objective algorithm to improve the lift-to-drag ratio of the airfoil, to realize the parallel optimization of the comprehensive aerodynamic performance of the airfoil for the range of angle-of-attack and the aerodynamic performance of the design working condition point. After CFD numerical validation, the lift coefficient of the optimized airfoil in the range angle of attack is improved by 4.6% and 7.0% on average, the lift-to-drag ratio is improved by 4.2% and 7.4% on average, and the lift-to-drag ratio of the design point is improved by 7.53% and 9.19%, which proves the feasibility of the method.
关键词
风力机 /
翼型 /
升阻比 /
气动性能 /
翼型优化 /
混沌映射
Key words
wind turbines /
airfoils /
lift drag ratio /
aerodynamic performance /
airfoil optimization /
chaotic map
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李春, 叶舟, 高伟, 等. 现代陆海风力机计算与仿真[M]. 上海: 上海科学技术出版社, 2012.
LI C, YE Z, GAO W, et al.Calculation and simulation of modern land-sea wind turbine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.
[2] 谭俊哲, 边冰冰, 司先才, 等. 基于多目标遗传算法的潮流能水轮机专用翼型优化设计[J]. 中国海洋大学学报(自然科学版), 2020, 50(7): 127-134.
TAN J Z, BIAN B B, SI X C, et al.Special hydrofoil optimization design of tidal turbine based on multi-objective genetic algorithm[J]. Periodical of Ocean University of China, 2020, 50(7): 127-134.
[3] DEB K, AGRAWAL S, PRATAP A, et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 849-858.
[4] 刘华威, 吴永忠, 张朋杨, 等. 基于自适应模拟退火遗传算法的风力机翼型优化设计[J]. 可再生能源, 2018, 36(6): 930-934.
LIU H W, WU Y Z, ZHANG P Y, et al.Research on adaptive simulated annealing genetic algorithm in wind turbine airfoil optimization design[J]. Renewable energy resources, 2018, 36(6): 930-934.
[5] 汪泉, 陈晓田, 胡梦杰, 等. 基于气动性能与刚度特性的风力机翼型优化设计[J]. 中国机械工程, 2020, 31(19): 2283-2289.
WANG Q, CHEN X T, HU M J, et al.Optimization design of wind turbine airfoils based on aerodynamic performance and stiffness characteristics[J]. China mechanical engineering, 2020, 31(19): 2283-2289.
[6] 张强, 缪维跑, 常林森, 等. 基于代理模型的风力机翼型动态失速优化设计[J]. 太阳能学报, 2023, 44(6): 343-350.
ZHANG Q, MIAO W P, CHANG L S, et al.Optimal design of dynamic stall of wind turbine airfoil based on surrogate model[J]. Acta energiae solaris sinica, 2023, 44(6): 343-350.
[7] 唐新姿, 李鹏程, 陆鑫宇, 等. 随机湍流工况低雷诺数风力机翼型优化研究[J]. 计算力学学报, 2019, 36(5): 664-671.
TANG X Z, LI P C, LU X Y, et al.Optimization of low Reynolds number wind turbine airfoil under stochastic turbulence condition[J]. Chinese journal of computational mechanics, 2019, 36(5): 664-671.
[8] 陈进, 郭小锋, 孙振业等. 基于改进多目标粒子群算法的风力机大厚度翼型优化设计[J]. 东北大学学报(自然科学版), 2016, 37(2): 232-236.
CHEN J, GUO X F, SUN Z Y, et al.Optimization of wind turbine thick airfoils using improved multi-objective particle swarm algorithm[J]. Journal of Northeastern University(natural science), 2016, 37(2): 232-236.
[9] RAUL V, LEIFSSON L.Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria[J]. Aerospace science and technology, 2021, 111: 106555.
[10] 刘春, 何舰. 改进Coupled算法在翼型气动性能计算中的应用[J]. 科学技术与工程, 2018, 18(2): 174-179.
LIU C, HE J.Application of improved Coupled algorithm in aerodynamic performance calculation of airfoil[J]. Science technology and engineering, 2018, 18(2): 174-179.
[11] 覃锴, 伊鹏辉, 刘兆方, 等. 基于多岛遗传算法的钝尾缘翼型多目标优化设计[J]. 太阳能学报, 2022, 43(9): 218-225.
QIN K, YIN P H, LIU Z F, et al.Multi-objective optimization design for blunt trailing-edge airfoil based on multi-island genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(9): 218-225.
[12] LE-DUC T, NGUYEN Q.Aerodynamic optimal design for horizontal axis wind turbine airfoil using integrated optimization method[J]. International journal of computational methods, 2019, 16(8): 1841004.
[13] 廖炎平, 刘莉, 龙腾. 几种翼型参数化方法研究[J]. 弹箭与制导学报, 2011, 31(3): 160-164.
LIAO Y P, LIU L, LONG T.The research on some parameterized methods for airfoil[J]. Journal of projectiles, rockets, missiles and guidance, 2011, 31(3): 160-164.
[14] DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling[J]. Aerospace science and technology, 2021, 113: 106701.
[15] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Renewable Energy Laboratory, 2009: 1-75.
[16] DRELA M.XFOIL: an analysis and design system for low Reynolds number airfoils[M]//Lecture Notes in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989: 1-12.
[17] HAN W, KIM J, KIM B.Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines[J]. Renewable energy, 2018, 115: 817-823.
[18] 郭现峰, 李浩华, 魏金玉. 基于Fibonacci变换和改进Logistic-Tent混沌映射的图像加密方案[J]. 吉林大学学报(工学版), 2023, 53(7): 2115-2120.
GUO X F, LI H H, WEI J Y.Image encryption scheme based on Fibonacci transform and improved Logistic-Tent chaotic map[J]. Journal of Jilin University (engineering and technology edition), 2023, 53(7): 2115-2120.
基金
国家自然科学基金(51966014); 内蒙古自治区科技计划(2021GG0436); 内蒙古自治区自然科学基金(2023MS05003); 内蒙古自治区高等学校青年科技英才支持项目(NJYT23021)