新型槽式太阳能耦合CO2跨临界朗肯循环发电系统性能研究

杨俊兰, 李梦希, 韩一飞, 王天宇, 张凯钰

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 488-495.

PDF(2046 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2046 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 488-495. DOI: 10.19912/j.0254-0096.tynxb.2023-1558

新型槽式太阳能耦合CO2跨临界朗肯循环发电系统性能研究

  • 杨俊兰, 李梦希, 韩一飞, 王天宇, 张凯钰
作者信息 +

PERFORMANCE STUDY OF NOVEL THROUGH SOLAR CONCENTRATOR COUPLED CO2 TRANSCRITICAL RANKINE CYCLE POWER GENERATION SYSTEMS

  • Yang Junlan, Li Mengxi, Han Yifei, Wang Tianyu, Zhang Kaiyu
Author information +
文章历史 +

摘要

为研究太阳能热在朗肯循环发电系统中的利用,将双级压缩中间再热CO2跨临界朗肯循环(DSRRC)、联合抽气回热/内回热CO2跨临界朗肯循环(CRIRC)以及自冷凝CO2跨临界朗肯循环系统(SCRC)分别与太阳能集热与储热子系统进行耦合,建立热力学模型,分析运行参数对发电系统热力性能的影响。结合该文系统及所给条件表明,3个系统在热效率最大处存在最优汽轮机入口压力,分别为15.0、21.5和23.0 MPa;3个系统的热效率和系统效率随着汽轮机入口温度的升高而不断增大;与CRIRC和SCRC相比,DSRRC的最大净输出功率随汽轮机入口压力的增加分别提高了34.0%和68.5%;分流比从0.1增加至0.5会使DSRRC的净输出功率较CRIRC和SCRC分别提高35.4%和72.0%。

Abstract

In order to study the utilization of solar heat in Rankine cycle power generation systems, the two-stage compression intermediate reheat CO2 transcritical Rankine cycle (DSRRC), the combined pumped reheat/internal reheat CO2 transcritical Rankine cycle (CRIRC), and the self-condensing CO2 transcritical Rankine cycle system (SCRC) are coupled with the solar collector and storage subsystems, respectively, and a thermodynamic model is developed to analyze the effects of the operating parameters on the thermal performance of the power generation system. Combining the conditions given for the systems in this paper shows that there exists an optimal turbine inlet pressure at the maximum thermal efficiency for the three systems, which are 15.0, 21.5, and 23.0 MPa, respectively;The thermal efficiency and exergy efficiency of the three systems increase continuously with the increase of the turbine inlet temperature; The maximum net output power of the DSRRC is increased by 34.0% and 68.5%, respectively, compared with that of the CRIRC and SCRC; And an increase of the shunt ratio from 0.1 to 0.5 increases the net output power of DSRRC by 35.4% and 72% compared to CRIRC and SCRC, respectively.

关键词

太阳能 / 热力学分析 / CO2跨临界循环 / 朗肯循环

Key words

solar energy / thermodynamic analysis / CO2 transcritical cycle / Rankine cycle

引用本文

导出引用
杨俊兰, 李梦希, 韩一飞, 王天宇, 张凯钰. 新型槽式太阳能耦合CO2跨临界朗肯循环发电系统性能研究[J]. 太阳能学报. 2025, 46(2): 488-495 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1558
Yang Junlan, Li Mengxi, Han Yifei, Wang Tianyu, Zhang Kaiyu. PERFORMANCE STUDY OF NOVEL THROUGH SOLAR CONCENTRATOR COUPLED CO2 TRANSCRITICAL RANKINE CYCLE POWER GENERATION SYSTEMS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 488-495 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1558
中图分类号: TK51   

参考文献

[1] KIM M H, PETTERSEN J, BULLARD C W.Fundamental process and system design issues in CO2 vapor compression systems[J]. Progress in energy and combustion science, 2004, 30(2): 119-174.
[2] 毛静雯, 徐斌, 胡宜康, 等. 太阳能有机朗肯循环研究与应用综述[J]. 低温与超导, 2020, 48(6): 77-83.
MAO J W, XU B, HU Y K, et al.Summary of research and application of solar organic Rankine cycle[J]. Cryogenics & superconductivity, 2020, 48(6): 77-83.
[3] 唐景春, 李俊辉, 李晶, 等. 新型复叠有机朗肯循环太阳能热发电系统的性能分析[J]. 太阳能学报, 2023, 44(6): 308-314.
TANG J C, LI J H, LI J, et al.Performance analysis of novel cascade organic Rankine cycle solar thermal power generation system[J]. Acta energiae solaris sinica, 2023, 44(6): 308-314.
[4] 张洁雄, 张杰, 穆永超, 等. 太阳能有机朗肯循环发电系统模拟优化研究[J]. 太阳能学报, 2023, 44(9): 236-240.
ZHANG J X, ZHANG J, MU Y C, et al.Study on simulation and optimization of solar organic Rankine cycle power generation system[J]. Acta energiae solaris sinica, 2023, 44(9): 236-240.
[5] 丁涛, 梁立军, 李震. 以二氧化碳为工质的朗肯循环特性分析[J]. 工程热物理学报, 2015, 36(2): 410-413.
DING T, LIANG L J, LI Z.Analytics of Rankine cycle system using CO2 as working fluid[J]. Journal of engineering thermophysics, 2015, 36(2): 410-413.
[6] 王晓奇. 太阳能有机朗肯循环储热发电系统储热及回热技术应用研究[D]. 南京: 东南大学, 2018.
WANG X Q.Study on the application of heat storage and regenerative technology in solar organic Rankine cycle heat storage power generation system[D]. Nanjing: Southeast University, 2018.
[7] PAN L S, LI B, SHI W X, et al.Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied energy, 2019, 253: 113608.
[8] SUN J, LIU Q, DUAN Y Y.Effects of reinjection temperature on thermodynamic performance of dual-pressure and single-pressure geothermal ORCs[J]. Energy procedia, 2019, 158: 6016-6023.
[9] TWOMEY B, JACOBS P A, GURGENCI H.Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander[J]. Applied thermal engineering, 2013, 51(1/2): 1307-1316.
[10] 邱留良, 任洪波, 班银银, 等. 有机朗肯循环低温余热利用技术研究综述[J]. 应用能源技术, 2015(10): 6-10.
QIU L L, REN H B, BAN Y Y, et al.Review of research on waste heat utilization based on organic Rankine cycle[J]. Applied energy technology, 2015(10): 6-10.
[11] 李冰. 自冷凝CO2跨临界动力循环研究[D]. 北京: 北京建筑大学, 2020.
LI B.Study on transcritical dynamic cycle of self-condensing CO2[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
[12] FORRISTALL R.Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver[R]. Colorado: National Renewable Energy Laboratory, 2003.
[13] 王慧敏. 太阳能有机朗肯循环热电联产性能分析及优化[D]. 吉林: 东北电力大学, 2022.
WANG H M.Performance analysis and optimization of solar organic Rankine cycle cogeneration[D]. Jilin: Northeast Dianli University, 2022.
[14] 李国帅, 罗显峰, 赵丹丹, 等. 直通式全玻璃真空集热器热性能研究[J]. 发电设备, 2021, 35(4): 236-241, 247.
LI G S, LUO X F, ZHAO D D, et al.Research on thermal performance of a straight-through all-glass vacuum collector[J]. Power equipment, 2021, 35(4): 236-241, 247.
[15] ABDOLLAHPOUR A, GHASEMPOUR R, KASAEIAN A, et al.Exergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink[J]. Journal of thermal analysis and calorimetry, 2020, 139(1): 451-473.

基金

天津市科技特派员项目(22YDTPJC00020); 天津市教委项目(2019KJ113)

PDF(2046 KB)

Accesses

Citation

Detail

段落导航
相关文章

/