基于遗传因子递推最小二乘法微网逆变器线路阻抗辨识

赖纪东, 崔玉妹, 董玮, 苏建徽, 徐珊珊, 吕振华

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 293-298.

PDF(2869 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2869 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 293-298. DOI: 10.19912/j.0254-0096.tynxb.2023-1560

基于遗传因子递推最小二乘法微网逆变器线路阻抗辨识

  • 赖纪东1, 崔玉妹1, 董玮1, 苏建徽1, 徐珊珊1, 吕振华2
作者信息 +

LINE IMPEDANCE IDENTIFICATION OF MICROGRID INVERTERS BASED ON GENETIC FACTOR-BASED RECURSIVE LEAST SQUARES METHOD

  • Lai Jidong1, Cui Yumei1, Dong Wei1, Su Jianhui1, Xu Shanshan1, Lyu Zhenhua2
Author information +
文章历史 +

摘要

为准确在线辨识微网逆变器线路阻抗,提出一种带遗传因子最小二乘法微网线路阻抗辨识方法。通过建立微网逆变器线路阻抗数学模型,基于遗传因子递推最小二乘法推导出线路阻抗辨识模型,然后进行迭代计算实时获得微网逆变器线路阻抗值。该方法能够实时准确地辨识微网逆变器线路阻抗参数,遗传因子的引入加快辨识响应速度,同时该方法适用于不平衡运行工况。为验证所提辨识方法性能,基于StarSim半实物实验平台进行实验验证,实验结果验证所提方法的辨识精度、跟随性能及不平衡工况下的适应性。

Abstract

In order to accurately obtain the line impedance values of microgrid inverters, this paper proposes a line impedance identification method with genetic factor least square. The microgrid inverter line impedance values are calculated in real time by establishing a microgrid inverter line impedance identification model and then substituting the identification model into the genetic factor least squares iterative calculation. The method is suitable to imbalanced operating settings and is capable of reliably identifying the microgrid inverter line impedance parameters in real time. The insertion of genetic variables speeds up the recognition speed, and the method is suitable for unbalanced operating conditions. In order to verify the performance of the proposed identification method, experimental validation is carried out based on the semi-physical experimental platform of StarSim, and the experimental results verify the identification accuracy, following performance, and adaptability under unbalanced operating conditions.

关键词

微网 / 参数辨识 / 线路阻抗 / 遗传因子 / 最小二乘法

Key words

microgrid / parameter identification / line impedance / genetic factors / least squares method

引用本文

导出引用
赖纪东, 崔玉妹, 董玮, 苏建徽, 徐珊珊, 吕振华. 基于遗传因子递推最小二乘法微网逆变器线路阻抗辨识[J]. 太阳能学报. 2025, 46(2): 293-298 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1560
Lai Jidong, Cui Yumei, Dong Wei, Su Jianhui, Xu Shanshan, Lyu Zhenhua. LINE IMPEDANCE IDENTIFICATION OF MICROGRID INVERTERS BASED ON GENETIC FACTOR-BASED RECURSIVE LEAST SQUARES METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 293-298 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1560
中图分类号: TM351   

参考文献

[1] 申泽渊, 赵海波, 李伟康等. 面向偏远地区低碳发展的风-光-沼-储综合能源微网多目标规划方法[J]. 太阳能学报, 2023, 44(7): 71-79.
SHEN Z Y, ZHAO H B, LI W K, et al.Multi-objective optimization method for low-carbon development of wind-solar-biogas-storage integrated energy microgrids in remote regions[J]. Acta energiae solaris sinica, 2023, 44(7): 71-79.
[2] 李圣清, 邓娜, 颜石等. 基于改进蚁群动态规划的光储微网容量优化配置[J]. 太阳能学报, 2023, 44(2): 468-476.
LI S Q, DENG N, YAN S, et al.Optimal configuration optimization of PV energy storage microgrid using improved ant colony dynamic programming[J]. Acta energiae solaris sinica, 2023, 44(2): 468-476.
[3] 盖宝, 潘再平. 基于Park变换的线路阻抗参数在线辨识新方法[J]. 太阳能学报, 2018, 39(6): 1735-1742.
GAI B, PAN Z P.Novel method of online identification of line impedance parameter based on Park transformation[J]. Acta energiae solaris sinica, 2018, 39(6): 1735-1742.
[4] SHI Z, JIACHENG L, NURDIN H I, et al.Comparison of virtual oscillator and droop controlled islanded three-phase microgrids[J]. IEEE transactions on energy conversion, 2019, 34(4): 1769-1780.
[5] 陈昕, 张昌华, 黄琦. 引入功率微分项下垂控制的微电网小信号稳定性分析[J]. 电力系统自动化, 2017, 41(3): 46-53.
CHEN X, ZHANG C H, HUANG Q.Small-signal stability analysis of microgrid using droop control with power differential term[J]. Automation of electric power systems, 2017, 41(3): 46-53.
[6] 佟强, 张东来, 徐殿国. 分布式电源系统中变换器的输出阻抗与稳定性分析[J]. 中国电机工程学报, 2011, 31(12): 57-64.
TONG Q, ZHANG D L, XU D G.Output impedance and stability analysis of converters in distributed power systems[J]. Proceedings of the CSEE, 2011, 31(12): 57-64.
[7] 陈晓祺, 贾宏杰, 陈硕翼, 等. 基于线路阻抗辨识的微电网无功均分改进下垂控制策略[J]. 高电压技术, 2017, 43(4): 1271-1279.
CHEN X Q, JIA H J, CHEN S Y, et al.Improved droop control strategy based on line impedance identification for reactive power sharing in microgrid[J]. High voltage engineering, 2017, 43(4): 1271-1279.
[8] 马文涛, 王金梅, 苗海东, 等. 不同功率等级逆变器并联的改进下垂控制策略研究[J]. 太阳能学报, 2021, 42(8): 16-22.
MA W T, WANG J M, MIAO H D, et al.Research on improved droop control strategy for paralleled inverters with different power levels[J]. Acta energiae solaris sinica, 2021, 42(8): 16-22.
[9] 赖纪东, 徐洁洁, 苏建徽, 等. 微网逆变器不平衡电压协调补偿边界分析与计算[J]. 电力系统自动化, 2022, 46(06): 127-136.
LAI J D, XU J J, SU J H, et al.Analysis and calculation of coordinated compensation boundary for unbalanced voltage of microgrid inverter[J]. Automation of electric power systems, 2022, 46(6): 127-136.
[10] 陈巧地, 张兴, 李明, 等. 基于阻抗辨识的下垂控制并网逆变器孤岛检测方法[J]. 电力系统自动化, 2020, 44(7): 123-129.
CHEN Q D, ZHANG X, LI M, et al.Impedance identification based islanding detection method for grid-connected inverter with droop control[J]. Automation of electric power systems, 2020, 44(7): 123-129.
[11] 杜燕, 吴厚博, 杨向真, 等. 基于Sobol拟随机脉宽调制的电网阻抗测量方法[J]. 电力系统自动化, 2021, 45(2): 148-156.
DU Y, WU H B, YANG X Z, et al.Power grid impedance measurement method based on Sobol quasi-random pulse width modulation[J]. Automation of electric power systems, 2021, 45(2): 148-156.
[12] 胡金杭, 施永, 周晨, 等. 微电网中的线路阻抗测量方法研究[J]. 电测与仪表, 2016, 53(18): 28-34.
HU J H, SHI Y, ZHOU C, et al.Line impedance measurement method for micro-grid[J]. Electrical measurement and instrumentation, 2016, 53(18): 28-34.
[13] 傅小利, 顾红兵, 陈国呈, 等. 基于柯西变异粒子群算法的永磁同步电机参数辨识[J]. 电工技术学报, 2014, 29(5): 127-131.
FU X L, GU H B, CHEN G C, et al.Permanent magnet synchronous motors parameters identification based on cauchy mutation particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 127-131.
[14] 胡泽鹏, 李斌, 姚斌, 等. 基于误差权重估计的串补线路阻抗快速计算方法[J]. 电力系统及其自动化学报, 2021, 33(8): 123-129, 137.
HU Z P, LI B, YAO B, et al.Fast calculation method for impedance of series compensated lines based on error weight estimation[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 123-129, 137.
[15] MOHAMMED N, LASHAB A, CIOBOTARU M, et al.Accurate reactive power sharing strategy for droop-based islanded AC microgrids[J]. IEEE transactions on industrial electronics, 2023, 70(3): 2696-2707.

基金

国家电网有限公司总部科技项目(5100-202255376A-2-0-ZN)

PDF(2869 KB)

Accesses

Citation

Detail

段落导航
相关文章

/