基于事件触发的Vienna整流器模型预测控制

党超亮, 蒋泽豪, 王艺华, 同向前, 刘丁, 宋卫章

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 272-281.

PDF(7060 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7060 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 272-281. DOI: 10.19912/j.0254-0096.tynxb.2023-1567

基于事件触发的Vienna整流器模型预测控制

  • 党超亮1,2, 蒋泽豪1, 王艺华1, 同向前1, 刘丁2, 宋卫章1
作者信息 +

MODEL PREDICTIVE CONTROL OF VIENNA RECTIFIER BASED ON EVENT-TRIGGERED

  • Dang Chaoliang1,2, Jiang Zehao1, Wang Yihua1, Tong Xiangqian1, Liu Ding2, Song Weizhang1
Author information +
文章历史 +

摘要

针对应用于Vienna整流器的有限集模型预测控制(FCS-MPC)存在并网电流纹波大、计算资源占用度高等问题,提出一种基于事件触发的Vienna整流器模型预测控制策略(ET-MPC)。首先,通过构建系统状态和动态事件触发条件之间的解析表达方程,揭示误差阈值对触发条件和静态性能的影响机理;其次,利用系统状态实时反馈设置跟踪电流误差阈值的事件触发条件以减少系统计算复杂度并改善网侧电流质量;最后,从静态、暂态和改变动态系数等多个维度进行仿真和实验的对比分析,结果表明,所提方法能有效改善并网电流质量,同时降低计算资源负担与开关损耗,具有良好的稳态和动态性能。

Abstract

Aiming at the problems of large grid-connected current ripple and high computational resource occupation of finite set model predictive control (FCS-MPC) applied to Vienna rectifier, this paper proposes an event triggered-model predictive control strategy (ET-MPC) for Vienna rectifier. Firstly, by constructing an analytical expression equation between system state and dynamic event triggering conditions, the impact mechanism of error threshold on triggering conditions and static performance is revealed. Secondly, using real-time feedback from system state to set event triggering conditions for tracking current error thresholds to reduce system computational complexity and improve grid side current quality. Finally, simulation and experimental comparisons were conducted from multiple dimensions such as static, transient, and changing dynamic coefficients. The results show that the proposed method can effectively improve the quality of grid connected current, while reducing the burden of computing resources and switching losses, and has good steady-state and dynamic performance.

关键词

Vienna整流器 / 模型预测控制 / 事件触发 / 开关损耗 / 多目标优化 / 直流电力传输

Key words

Vienna rectifier / model predictive control / event-triggered / switching loss / multi-objective optimization / DC power transmission

引用本文

导出引用
党超亮, 蒋泽豪, 王艺华, 同向前, 刘丁, 宋卫章. 基于事件触发的Vienna整流器模型预测控制[J]. 太阳能学报. 2025, 46(2): 272-281 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1567
Dang Chaoliang, Jiang Zehao, Wang Yihua, Tong Xiangqian, Liu Ding, Song Weizhang. MODEL PREDICTIVE CONTROL OF VIENNA RECTIFIER BASED ON EVENT-TRIGGERED[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 272-281 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1567
中图分类号: TM46   

参考文献

[1] 李东东, 郭天洋, 刘庆飞, 等. 计及光伏发电的新能源电力系统惯量评估[J]. 太阳能学报, 2021, 42(5): 174-179.
LI D D, GUO T Y, LIU Q F, et al.Inertia estimation of renewable power system considering photovoltaics[J]. Acta energiae solaris sinica, 2021, 42(5): 174-179.
[2] 姜卫东, 唐林, 刘海勋, 等. 一种快速响应的新型Vienna整流器控制方法[J]. 电力电子技术, 2023, 57(4): 27-31.
JIANG W D, TANG L, LIU H X, et al.A new fast response control method for Vienna rectifier[J]. Power electronics, 2023, 57(4): 27-31.
[3] 王金平, 刘圣宇, 张庆岩, 等. 一种改进的可消除Vienna整流器电流过零畸变的控制方法[J]. 电工技术学报, 2022, 37(15): 3834-3844.
WANG J P, LIU S Y, ZHANG Q Y, et al.An improved control method to eliminate the current zero-crossing distortion for Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3834-3844.
[4] 岳益民, 刘芳, 姜卫东, 等. 电网电压不平衡条件下Vienna整流器控制及电流过零畸变抑制方法[J]. 中国电机工程学报, 2023, 43(16): 6395-6407.
YUE Y M, LIU F, JIANG W D, et al.The control and current over-zero distortion suppression method for Vienna rectifier under unbalanced grid voltage condition[J]. Proceedings of the CSEE, 2023, 43(16): 6395-6407.
[5] ZHU W J, CHEN C S, DUAN S X, et al.A carrier-based discontinuous PWM method with varying clamped area for Vienna rectifier[J]. IEEE transactions on industrial electronics, 2019, 66(9): 7177-7188.
[6] 邹宇航, 张犁, 赵瑞, 等. 三相Vienna整流器的不连续空间矢量脉宽调制及电压谐波分析方法[J]. 中国电机工程学报, 2020, 40(24): 8123-8130.
ZOU Y H, ZHANG L, ZHAO R, et al.Discontinuous pulse width modulation and voltage harmonic analysis method for three-phase Vienna-type rectifiers[J]. Proceedings of the CSEE, 2020, 40(24): 8123-8130.
[7] KHALIGH A, DUSMEZ S.Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles[J]. IEEE transactions on vehicular technology, 2012, 61(8): 3475-3489.
[8] 韦徵, 陈新, 陈杰, 等. 基于单周期控制的三相PFC整流器输入电流相位滞后及闭环补偿[J]. 中国电机工程学报, 2013, 33(33): 42-49.
WEI Z, CHEN X, CHEN J, et al.Input current phase lag and closed loop compensation for three-phase PFC rectifiers based on one-cycle control strategy[J]. Proceedings of the CSEE, 2013, 33(33): 42-49.
[9] 薛宇石, 徐少华, 李建林, 等. PI控制下储能并网PCS多机并联稳定性分析[J]. 高电压技术, 2018, 44(1): 136-144.
XUE Y S, XU S H, LI J L, et al.Stability analysis of grid-connected multi-parallel PCS for energy storage system under PI control[J]. High voltage engineering, 2018, 44(1): 136-144.
[10] 朱文杰, 陈昌松, 段善旭. 一种基于离散空间矢量调制的Vienna整流器模型预测控制方法[J]. 中国电机工程学报, 2019, 39(20): 6008-6016.
ZHU W J, CHEN C S, DUAN S X.A model predictive control method with discrete space vector modulation of Vienna rectifier[J]. Proceedings of the CSEE, 2019, 39(20): 6008-6016.
[11] 党超亮, 同向前, 宋卫章, 等. 基于降阶模型的三相Vienna整流器交流级联稳定性分析[J]. 电力自动化设备, 2018, 38(10): 133-139.
DANG C L, TONG X Q, SONG W Z, et al.Stability analysis of three-phase Vienna rectifier AC cascade system based on reduced order model[J]. Electric power automation equipment, 2018, 38(10): 133-139.
[12] 杨頔, 姚钢, 周荔丹. 功率变化环境下的四线制Vienna整流器优化联合控制方法[J]. 电工技术学报, 2021, 36(2): 305-319.
YANG D, YAO G, ZHOU L D.An improved control method of 4-wire Vienna rectifier considering power fluctuation[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 305-319.
[13] 周华伟, 王成明, 孙大万, 等. 基于简化有限集模型预测电流控制的五相PMSM统一容错控制[J]. 中国电机工程学报, 2024, 44(1): 269-279.
ZHOU H W, WANG C M, Sun Dawan, et al.A unified fault-tolerant control of five-phase pmsm based on simplified finite control set model predictive current control[J]. Proceedings of the CSEE, 2024, 44(1): 269-279.
[14] 李圣清, 邓娜, 颜石, 等. 基于改进蚁群动态规划的光储微网容量优化配置[J]. 太阳能学报, 2023, 44(2): 468-476.
LI S Q, DENG N, YAN S, et al.Optimal configuration optimization of PV energy storage microgrid using improved ant colony dynamic programming[J]. Acta energiae solaris sinica, 2023, 44(2): 468-476.
[15] 朱虹, 张兴, 李明, 等. T型三电平逆变器模型预测多目标优化控制方法[J]. 太阳能学报, 2021, 42(9): 90-96.
ZHU H, ZHANG X, LI M, et al.Multi-objective optimal control method for T-type three-level inverter based on model predictive[J]. Acta energiae solaris sinica, 2021, 42(9): 90-96.
[16] BAYHAN S, KOMURCUGIL H, GULER N.An enhanced finite control set model predictive control method with self-balancing capacitor voltages for three-level T-type rectifiers[J]. IET power electronics, 2022, 15(6): 504-514.
[17] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器的改进型有限集模型预测控制[J]. 太阳能学报, 2022, 43(8): 67-74.
HONG J F, ZHANG X, CAO R X, et al.Improved finite control set model predictive control of three-level grid-connected inverter[J]. Acta energiae solaris sinica, 2022, 43(8): 67-74.
[18] WANG H W, ZHANG H.Study on an improve finite-control-set-model predictive control (FCS-MPC) strategy for a T-type rectifier with direct power control strategy[J]. IEEJ transactions on electrical and electronic engineering, 2023, 18(3): 442-450.
[19] 刘涛, 习金玉, 宋战锋, 等. 基于多核并行计算的永磁同步电机有限集模型预测控制策略[J]. 电工技术学报, 2021, 36(1): 107-119.
LIU T, XI J Y, SONG Z F, et al.Finite control set model predictive control of permanent magnet synchronous motor based on multi-core parallel computing[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 107-119.
[20] LIU X, QIU L, FANG Y T, et al.Finite-level-state model predictive control for sensorless three-phase four-arm modular multilevel converter[J]. IEEE transactions on power electronics, 2020, 35(5): 4462-4466.
[21] 徐艳平, 张保程, 周钦. 永磁同步电机双矢量模型预测电流控制[J]. 电工技术学报, 2017, 32(20): 222-230.
XU Y P, ZHANG B C, ZHOU Q.Two-vector based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 222-230.
[22] 陈卓易, 屈稳太, 邱建琪. 一种开关频率可控的有限集模型预测控制[J]. 电工技术学报, 2022, 37(16): 4134-4142.
CHEN Z Y, QU W T, QIU J Q.A switching-frequency-controlled finite-control-set model predictive control method[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4134-4142.
[23] LIN C K, YU J T, LAI Y S, et al.Simplified model-free predictive current control for interior permanent magnet synchronous motors[J]. Electronics letters, 2016, 52(1): 49-50.
[24] LEE J S, LEE K B.Predictive control of Vienna rectifiers for PMSG systems[J]. IEEE transactions on industrial electronics, 2017, 64(4): 2580-2591.
[25] TABUADA P.Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE transactions on automatic control, 2007, 52(9): 1680-1685.
[26] 党超亮, 王飞, 穆晓宇, 等. 引入电感参数辨识的Vienna整流器双矢量预测恒频控制[J]. 中国电机工程学报, 2022, 42(S1): 246-255.
DANG C L, WANG F, MU X Y, et al.Dual vector model predictive with constant frequency control for Vienna rectifier based on inductance parameters identification[J]. Proceedings of the CSEE, 2022, 42(S1): 246-255.
[27] WANG B F, HUANG J J, WEN C Y, et al.Event-triggered model predictive control for power converters[J]. IEEE transactions on industrial electronics, 2021, 68(1): 715-720.
[28] 刘春喜, 郑文帅, 乔宇, 等. 三相并网逆变器事件触发有限集模型预测控制[J]. 电力系统及其自动化学报, 2022, 34(2): 137-143.
LIU C X, ZHENG W S, QIAO Y, et al.Event-triggered finite control set model predictive control for three-phase grid-connected inverter[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 137-143.
[29] 周运红, 张爱民, 黄晶晶, 等. 基于动态事件触发的Vienna整流器模型预测控制[J]. 电工技术学报, 2022, 37(8): 2040-2050.
ZHOU Y H, ZHANG A M, HUANG J J, et al.Dynamic event-triggered model predictive control for Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2040-2050.

基金

陕西省科技计划青年项目(2022JQ-512); 电力设备电气绝缘国家重点实验室资助(EIPE21201)

PDF(7060 KB)

Accesses

Citation

Detail

段落导航
相关文章

/