一种新型梁筒风电机组基础数值分析及试验研究

岳想琳, 霍宏斌, 张成, 陈艳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 658-663.

PDF(1879 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1879 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 658-663. DOI: 10.19912/j.0254-0096.tynxb.2023-1569

一种新型梁筒风电机组基础数值分析及试验研究

  • 岳想琳1,2, 霍宏斌1, 张成1, 陈艳2
作者信息 +

NUMERICAL ANALYSIS AND EXPERIMENT RESEARCH OF A NEW TYPE OF FOUNDATION FOR WIND TURBINES WITH BRACED TUBE FOUNDATION

  • Yue Xianglin1,2, Huo Hongbin1, Zhang Cheng1, Chen Yan2
Author information +
文章历史 +

摘要

在风电行业快速发展、风电项目风电机组基础成本居高不下的背景下,提出一种基于筒型基础带支撑梁的新型陆上风电机组基础型式——梁筒基础。通过建立有限元模型,得到梁筒基础相对筒形基础在C40混凝土用量上减小了49%;研究得到梁筒基础支撑梁数量与水平极限承载力的关系,支撑梁数量的最佳取值范围在4n12;梁筒基础在黏黏性土中承载性能更优。通过开展缩尺模型试验,验证了数值分析中有限元模型的准确性,得到在相同混凝土体量下梁筒基础与筒型基础的极限承载力比值为1.73∶1,达到极限承载力时基础顶部水平位移比值为0.68∶1。研究表明梁筒基础在承载力、材料耗量、位移控制方面具有优势。

Abstract

A new type of onshore wind turbine foundation based on tube foundation with supporting beams, braced tube foundation, was proposed on the backdrop of the rapid development of the wind power industry and the high costs of the wind turbine foundation. By establishing a finite element model, the quantity of C40 concrete used for braced tube foundation are reduced by 49% compared to tube foundation. The relationship between the number of supporting beams of braced tube foundation and the ultimate horizontal bearing capacity has been studied, and it is found that the optimal range for the number of supporting beams is 4<n<12 and braced tube foundation has stronger load-bearing performance in cohesive soil. By conducting a scaled model experiment, it is verified that the accuracy of the finite element model and found that the ultimate bearing capacity ratio of the braced tube foundation to the tube foundation is 1.73∶1 under the same concrete volume, and the top horizontal displacement ratio is 0.68∶1 when the ultimate bearing capacity is reached. It shows that the braced tube foundation has advantages in bearing capacity, material consumption, and displacement control.

关键词

风电机组 / 承载力 / 数值模拟 / 缩尺模型试验 / 梁筒基础

Key words

wind turbine generators / bearing capacity / numerical simulation / scaled model experiment / braced tube foundation

引用本文

导出引用
岳想琳, 霍宏斌, 张成, 陈艳. 一种新型梁筒风电机组基础数值分析及试验研究[J]. 太阳能学报. 2025, 46(2): 658-663 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1569
Yue Xianglin, Huo Hongbin, Zhang Cheng, Chen Yan. NUMERICAL ANALYSIS AND EXPERIMENT RESEARCH OF A NEW TYPE OF FOUNDATION FOR WIND TURBINES WITH BRACED TUBE FOUNDATION[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 658-663 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1569
中图分类号: TU476+.1   

参考文献

[1] NB/T 10311—2019, 陆上风电场工程风电机组基础设计规范[S].
NB/T 10311—2019, Code for design of wind turbine foundations for onshore wind power projects[S].
[2] 康明虎. 梁板式、无张力灌注桩与传统风机基础的对比分析[J]. 可再生能源, 2014, 32(3): 324-329.
KANG M H.Comparison of beam slab foundation, tensionless pile foundation and traditional foundation of wind turbine[J]. Renewable energy resources, 2014, 32(3): 324-329.
[3] 程峰, 霍宏斌, 付秋顺, 等. 筒型风电机组基础的受力机理和变形试验研究[J]. 风能, 2019(1): 72-76.
CHENG F, HUO H B, FU Q S, et al.Experimental study on stress mechanism and deformation of bucket wind turbine foundation[J]. Wind energy, 2019(1): 72-76.
[4] 汪嘉钰, 刘润, 陈广思, 等. 海上风电宽浅式筒型基础竖向极限承载力上限解[J]. 太阳能学报, 2022, 43(3): 294-300.
WANG J Y, LIU R, CHEN G S, et al.Upper bound solution limit analysis of vertical bearing capacity of shallow bucket foundation for offshore wind turbines[J]. Acta energiae solaris sinica, 2022, 43(3): 294-300.
[5] GUPTA B K, BASU D.Applicability of Timoshenko, Euler-Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles[J]. Géotechnique, 2018, 68(9): 772-785.
[6] TIMOSHENKO S P.LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The london, Edinburgh, and Dublin philosophical magazine and journal of science, 1921, 41(245): 744-746.
[7] ALEEM M, BHATTACHARYA S, CUI L, et al.Load utilisation (LU) ratio of monopiles supporting offshore wind turbines: formulation and examples from European wind farms[J]. Ocean engineering, 2022, 248: 110798.
[8] ALKHOURY P, SOUBRA A H, REY V, et al.Dynamic analysis of a monopile-supported offshore wind turbine considering the soil-foundation-structure interaction[J]. Soil dynamics and earthquake engineering, 2022, 158: 107281.
[9] BRANSBY M F, MARTIN C M.Elasto-plastic modelling of bucket foundations[M]. Numerical Models in Geomechanics. London: CRC Press, 2020: 425-430.
[10] MANA D S K, GOURVENEC S M, RANDOLPH M F, et al. Failure mechanisms of skirted foundations in uplift and compression[J]. International journal of physical modelling in geotechnics, 2012, 12(2): 47-62.
[11] KELLY R B, HOULSBY G T, BYRNE B W.A comparison of field and laboratory tests of caisson foundations in sand and clay[J]. Géotechnique, 2006, 56(9): 617-626.
[12] BHATTACHARYA S, ADHIKARI S.Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil dynamics and earthquake engineering, 2011, 31(5/6): 805-816.
[13] 霍宏斌, 黄必能, 王晓梅, 等. 一种抗倾覆的后张法预应力管状风机基础结构: CN114215100A[P].2022-03-22.
HUO H B, HUANG B N, WANG X M, et al. A prestressed tube foundation configuration with post-tensioning method and resisting overturning for wind turbine: CN114215100A[P].2022-03-22.
[14] BRINKGREVE R B J, KUMARSWAMY S, SWOLFS W M. PLAXIS manual 2018[M]. Delft: Plaxis bv, 2018.
[15] BUTTERFIELD R, HOULSBY G T, GOTTARDI G.Standardized sign conventions and notation for generally loaded foundations[J]. Géotechnique, 1997, 47(5): 1051-1054.

PDF(1879 KB)

Accesses

Citation

Detail

段落导航
相关文章

/