车用PEMFC氢燃料中痕量硫化物的分析方法研究

邓凡锋, 邓文清, 徐冰艳, 王维康, 林俊杰, 潘义

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 562-569.

PDF(1156 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1156 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 562-569. DOI: 10.19912/j.0254-0096.tynxb.2023-1570

车用PEMFC氢燃料中痕量硫化物的分析方法研究

  • 邓凡锋, 邓文清, 徐冰艳, 王维康, 林俊杰, 潘义
作者信息 +

ANALYSIS METHOD STUDIES OF TRACE SULFIDES IN HYDROGEN FUEL FOR PEMFC VEHICLES

  • Deng Fanfeng, Deng Wenqing, Xu Bingyan, Wang Weikang, Lin Junjie, Pan Yi
Author information +
文章历史 +

摘要

基于在线动态稀释、低温富集和硫化学发光气相色谱的耦合联用,建立质子交换膜燃料电池汽车用氢燃料中痕量硫化物的分析方法。研究结果表明:在实验优化的分析系统聚焦温度、脱附温度、进样流量、进样体积的参数条件下,建立起质子交换膜燃料电池汽车用氢气中痕量硫化物的分析方法,方法线性R20.9995,检出限和定量限为0.0030~0.0066 nmol/mol,回收率为95%~105%,重复性限为0.036~0.070 nmol/mol,再现性限为0.048~0.080 nmol/mol,方法满足氢燃料中痕量硫化物的分析需求。

Abstract

In this paper, a method for analysis of trace sulfides in hydrogen fuel for PEMFC vehicles based on the online gas diluter, low temperature enrichment device and gas chromatography with sulfur chemiluminescence detector was established. The results show that under the optimal experimental conditions including focusing temperature, stripping temperature, injection flow and injection volume, the established method is with the linear correlation coefficient R20.9995, detection limit of 0.0030-0.0066 nmol/mol, recovery of 95%-105%, repeatability limit of 0.036-0.070 nmol/mol, and reproducibility limit of 0.048-0.080 nmol/mol, which meets the analysis requirements of the trace sulfur in hydrogen fuel for PEMFC vehicles.

关键词

质子交换膜燃料电池 / 氢燃料 / 硫化物 / 气相色谱 / 硫化学发光检测器 / 低温富集

Key words

PEMFC / hydrogen fuels / sulfur compounds / gas chromatography / sulfur chemiluminescence detector / low temperature enrichment

引用本文

导出引用
邓凡锋, 邓文清, 徐冰艳, 王维康, 林俊杰, 潘义. 车用PEMFC氢燃料中痕量硫化物的分析方法研究[J]. 太阳能学报. 2024, 45(12): 562-569 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1570
Deng Fanfeng, Deng Wenqing, Xu Bingyan, Wang Weikang, Lin Junjie, Pan Yi. ANALYSIS METHOD STUDIES OF TRACE SULFIDES IN HYDROGEN FUEL FOR PEMFC VEHICLES[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 562-569 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1570
中图分类号: O657.7    TK91   

参考文献

[1] 刘超广, 马贵阳, 孙东旭. 氢气管输技术研究进展[J]. 太阳能学报, 2023, 44(1): 451-458.
LIU C G, MA G Y, SUN D X.Research progress for technology of hydrogen transportation by pipeline[J]. Acta energiae solaris sinica, 2023, 44(1): 451-458.
[2] MIDILLI A, DINCER I.Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption[J]. International journal of hydrogen energy, 2008, 33(16): 4209-4222.
[3] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
HE Z X, SHI C X, CHEN Z C, et al.Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical industry and engineering progress, 2021, 40(9): 4762-4773.
[4] 赵宇洋, 赵浩然, 谭建鑫, 等. 面向风电制氢的超短期组合功率预测[J]. 太阳能学报, 2023, 44(3): 162-168.
ZHAO Y Y, ZHAO H R, TAN J X, et al.Combined ultra-short-term power prediction for wind power hydrogen production technology[J]. Acta energiae solaris sinica, 2023, 44(3): 162-168.
[5] 潘义, 邓凡锋, 王维康, 等. 车用燃料氢气中杂质组分分析方法标准化现状与探讨: 以质子交换膜燃料电池汽车为例[J]. 天然气工业, 2021, 41(4): 115-123.
PAN Y, DENG F F, WANG W K, et al.Status quo and discussion on the standardization of analysis methods for the impurity components in hydrogen of vehicle fuel: a case study on the proton exchange membrane fuel cell vehicle[J]. Natural gas industry, 2021, 41(4): 115-123.
[6] MEUZELAAR H, LIU J W, PERSIJN S, et al.Trace level analysis of reactive ISO 14687 impurities in hydrogen fuel using laser-based spectroscopic detection methods[J]. International journal of hydrogen energy, 2020, 45(58): 34024-34036.
[7] BACQUART T, MOORE N, STORMS W, et al.Hydrogen fuel quality for transport-first sampling and analysis comparison in Europe on hydrogen refuelling station (70 MPa) according to ISO 14687 and EN 17124[J]. Fuel communications, 2021, 6: 100008.
[8] 邓凡锋, 张婷, 邓文清, 等. 基于气相色谱的质子交换膜燃料电池用氢气中无机组分和总烃的快速分析方法[J]. 天然气工业, 2022, 42(增刊1): 186-192.
DENG F F, ZHANG T, DENG W Q, et al.Rapid analysis method of inorganic components and total hydrocarbons in hydrogen for proton exchange membrane fuel cells based on gas chromatography[J]. Natural gas industry, 2022, 42(S1): 186-192.
[9] 邓凡锋, 邓文清, 张婷, 等. 在线稀释-傅里叶变换红外光谱法用于质子交换膜燃料电池汽车用氢燃料中微痕量杂质组分的快速分析[J]. 分析试验室, 2023, 42(3): 312-318.
DENG F F, DENG W Q, ZHANG T, et al.Rapid analysis of impurity components in fuel hydrogen for proton exchange membrane fuel cell vehicle using on-line dilution-Fourier transform infrared spectroscopy method[J]. Chinese journal of analysis laboratory, 2023, 42(3): 312-318.
[10] 何广利, 窦美玲. 氢气中杂质对车用燃料电池性能影响的研究进展[J]. 化工进展, 2021, 40(9): 4815-4822.
HE G L, DOU M L.Progress on effect of hydrogen impurities on the performance of automotive fuel cells[J]. Chemical industry and engineering progress, 2021, 40(9): 4815-4822.
[11] KHAN M A H, WHELAN M E, RHEW R C. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection[J]. Talanta, 2012, 88: 581-586.
[12] XU C, ZHANG Y W, WANG Y M, et al.Accurate quantification of ultra-trace sulfur compounds in hydrogen by integrating fill-less trap pre-concentration with gas chromatograph and sulfur chemiluminescence detector[J]. International journal of hydrogen energy, 2022, 47(55): 23264-23277.
[13] PAN Y, DENG F F, FANG Z, et al.Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese chemical letters, 2021, 32(11): 3440-3445.
[14] NI L, GENG X, LI S, et al.A flame photometric detector with a silicon photodiode assembly for sulfur detection[J]. Talanta, 2020, 207: 120283.
[15] ELZINGA M, ZAMUDIO J, VAN BOVEN KAARSMAKER S, et al. A simple method for routine measurement of organosulfur compounds in complex liquid and gaseous matrices[J]. Journal of chromatography A, 2022, 1677: 463276.
[16] TRABUE S, SCOGGIN K, MITLOEHNER F, et al.Field sampling method for quantifying volatile sulfur compounds from animal feeding operations[J]. Atmospheric environment, 2008, 42(14): 3332-3341.
[17] LINK D D, BALTRUS J P, ROTHENBERGER K S, et al.Rapid determination of total sulfur in fuels using gas chromatography with atomic emission detection[J]. Journal of chromatographic science, 2002, 40(9): 500-504.
[18] 郭亚伟, 李海燕, 宋晓娟, 等. SUMMA罐采样-GC×GC-TOFMS同时测定空气中有机硫化物[J]. 中国环境监测, 2014, 30(2): 104-107.
GUO Y W, LI H Y, SONG X J, et al.SUMMA canister sampling-GC × GC-TOFMS simultaneous determination of organic sulfide in air[J]. Environmental monitoring in China, 2014, 30(2): 104-107.
[19] KIM M E, KIM Y D, KANG J H, et al.Development of traceable precision dynamic dilution method to generate dimethyl sulphide gas mixtures at sub-nanomole per mole levels for ambient measurement[J]. Talanta, 2016, 150: 516-524.
[20] ISO 21087:2019, Gas analysis: analytical method for hydrogen fuel: proton exchange membrane(PEM) fuel cell applications for road vehicles[S].
[21] 徐聪, 徐广通, 宗保宁, 等. 氢燃料电池汽车用氢气中痕量杂质分析技术进展[J]. 化工进展, 2021, 40(2): 688-702.
XU C, XU G T, ZONG B N, et al.Analytical progress of trace impurities in hydrogen for fuel cell vehicles[J]. Chemical industry and engineering progress, 2021, 40(2): 688-702.
[22] GB/T6379.2—2004, 测量方法与结果的准确度(正确度与精密度)第2部分: 确定标准测量方法重复性与再现性的基本方法[S].
GB/T6379.2—2004, Accuracy (trueness and precision)of measurement methods and results: Part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method[S].
[23] GB/T 20001.4—2015, 标准编写规则第4部分: 试验方法标准[S].
GB/T 20001.4—2015, Rules for drafting standards part 4: test method standards[S].
[24] T/CPCIF0379, 气体分析氢气中硫化合物含量的测定低温富集-硫化学发光气相色法[S].
T/CPCIF0379, Gas analysis: determination of sulfide in hydrogen-cryogenic enrichment and gas chromatography with sulfur chemiluminescence[S].

基金

四川省重点研发计划(2023YFG0070); 四川省省级科研院所基本科研业务项目(2024JDKY0039)

PDF(1156 KB)

Accesses

Citation

Detail

段落导航
相关文章

/