并网前大型风力机在不同风向下产生大幅振动的现象较为普遍,该文探讨该现象的机理及其抑振措施。以NREL 5 MW风力机为研究对象,基于计算流体动力学(CFD)和多体动力学方法,建立偏航风向下风力机涡激振动的全耦合仿真模型,对其流场特性与结构响应特性进行机理性分析。结果表明:在0°~90°的风向范围内,叶片与塔筒的尾涡的相互干扰和合并现象显著,导致叶片叶尖位移与叶根剪切力增大,且塔筒的阻力系数均值与孤立塔筒情况下存在较大差异。偏航风向为40°~50°时,风力机的涡激振动尤为严重,极端风况下塔顶位移在50°时出现最大值,约为0.97 m。通过安装调谐质量阻尼器(TMD)来抑制涡激振动,研究发现TMD大幅度降低了风力机的特征频率振动的功率谱密度,可使塔顶位移最大减少约30.8%。
Abstract
It is common for large wind turbines to produce large vibration under different wind directions before grid connection. This paper delves into the underlying mechanism of this phenomenon and proposes measures for its suppression. Based on computational fluid dynamics (CFD) and multi-body dynamics method, a fully coupled simulation model of vortex-induced vibration of the NREL 5 MW wind turbine under yaw wind direction is established. The flow field characteristics and structural response characteristics are analyzed mechanically. The results show that in the wind direction range of 0°-90°, the mutual interference and merging of the wake vortex between the blade and the tower are significant, which leads to the increase of the blade tip displacement and the blade root shear force, and the mean drag coefficient of the tower is quite different from that of the isolated tower. When the yaw wind direction is from 40° to 50°, the vortex-induced vibration of the wind turbine becomes particularly severe, and the maximum displacement of the tower top occurs at 50°, reaching approximately 0.97 m. By installing tuned mass damper (TMD) to suppress vortex-induced vibration, it is found that TMD greatly reduces the power spectral density of the characteristic frequency vibration of the wind turbine, and reduces the displacement of the tower top by about 30.8 %.
关键词
风力机 /
塔筒 /
涡脱落 /
偏航 /
涡激振动 /
调谐质量阻尼器
Key words
wind turbines /
towers /
vortex shedding /
yaw /
vortex-induced vibration /
tuned mass damper(TMD)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FENG C C.The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver: University of British Columbia, 1968.
[2] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of fluids and structures, 1988, 2(4): 355-381.
[3] WILLIAMSON C H K. Vortex dynamics in the cylinder wake[J]. Annual review of fluid mechanics, 1996, 28: 477-539.
[4] KHALAK A, WILLIAMSON C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of fluids and structures, 1997, 11(8): 973-982.
[5] HERFJORD K, DRANGE S O, KVAMSDAL T.Assessment of vortex-induced vibrations on deepwater risers by considering fluid-structure interaction[J]. Journal of offshore mechanics and Arctic engineering, 1999, 121(4): 207-212.
[6] BELVER A V, IBÁN A L, LAVÍN MARTÍN C E. Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney[J]. Journal of wind engineering and industrial aerodynamics, 2012, 100(1): 30-37.
[7] BELVER A V, KOO K, IBÁN A L, et al. Enhanced vortex shedding in a 183 m industrial chimney[J]. Advances in structural engineering, 2014, 17(7): 951-960.
[8] YANG Y, BASHIR M, MICHAILIDES C, et al.Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures[J]. Renewable energy, 2021, 176: 89-105.
[9] WANG L L, ISHIHARA T.A new FounDyn module in OpenFAST to consider foundation dynamics of monopile supported wind turbines using a site-specific soil reaction framework[J]. Ocean engineering, 2022, 266: 112692.
[10] RAHMAN M, ONG Z C, CHONG W T, et al.Performance enhancement of wind turbine systems with vibration control: a review[J]. Renewable and sustainable energy reviews, 2015, 51: 43-54.
[11] ZUO H R, BI K M, HAO H.A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and sustainable energy reviews, 2020, 121: 109710.
[12] ROY S, KUNDU C K.State of the art review of wind induced vibration and its control on transmission towers[J]. Structures, 2021, 29: 254-264.
[13] HAN D D, WANG W H, LI X, et al.Optimization design of multiple tuned mass dampers for semi-submersible floating wind turbine[J]. Ocean engineering, 2022, 264: 112536.
[14] HAN D D, LI X, WANG W H, et al.Dynamic modeling and vibration control of barge offshore wind turbine using tuned liquid column damper in floating platform[J]. Ocean engineering, 2023, 276: 114299.
[15] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113-1127.
DING Q W, LI C, YUAN W B, et al.Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effects of wind and wave[J]. Proceedings of the CSEE, 2019, 39(4): 1113-1127.
[16] 杨佳佳, 贺尔铭, 陈鹏翔, 等. 混合质量阻尼器在海上漂浮式风力机振动响应抑制中的应用[J]. 机械工程学报, 2022, 58(8): 250-257.
YANG J J, HE E M, CHEN P X, et al.Application of hybrid mass damper in vibration suppression of floating offshore wind turbine[J]. Journal of mechanical engineering, 2022, 58(8): 250-257.
[17] YUE Y C, LI C X, JIA K, et al.Optimization of the seismic performance of a steel-concrete wind turbine tower with the tuned mass damper[J]. Buildings, 2022, 12(9): 1474.
[18] 闫阳天, 李春, 杨阳, 等. 基于VMD方法的海上风力机结构TMD抗震[J]. 机械工程学报, 2022, 58(4): 155-164.
YAN Y T, LI C, YANG Y, et al.ANTI-seismic of offshore wind turbine with TMD based on VMD method[J]. Journal of mechanical engineering, 2022, 58(4): 155-164.
[19] 许子非, 叶柯华, 李春, 等. 海冰载荷作用下海上风力机TMD减振研究[J]. 热能动力工程, 2018, 33(10): 127-134.
XU Z F, YE K H, LI C, et al.Vibration reduction analysis of offshore wind turbine with TMD system[J]. Journal of engineering for thermal energy and power, 2018, 33(10): 127-134.
[20] 杜静, 许亚能, 谢双义, 等. 基于TMD的风力机塔筒振动控制研究[J]. 太阳能学报, 2021, 42(2): 157-162.
DU J, XU Y N, XIE S Y, et al.Research on vibration control of wind turbine tower based on TMD[J]. Acta energiae solaris sinica, 2021, 42(2): 157-162.
[21] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and computational fluid dynamics, 2006, 20(3): 181-195.
[22] JONKMAN J, SPRAGUE M.OpenFAST documentation release v3.5[J]. Golden, CO, USA: National Renewable Energy Laboratory, 2023.
[23] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Laboratory, Golden, CO, USA,Technical Report No.NREL/TP-500-38060, 2009.
[24] Wind energy generationsystems-Part 1: Design requirements: DS/EN IEC 61400-1: 2019[S]. Danish Standards, 2019.
[25] PARNAUDEAU P, CARLIER J, HEITZ D, et al.Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of fluids, 2008, 20(8): 085101.
基金
国家自然科学基金(52376179; 51876054; 12102125); 江苏省研究生科研创新基金(KYCX23_0678)