针对一种船形摆式波浪能发电装置的运动响应及能量俘获特性进行研究。该波浪能发电装置以船形摆作为吸波浮体,在波浪驱动下,绕位于装置重心处的主轴旋转,主轴两端与固定在海床上支撑立柱连结,进而驱动内置的机械式动力摄取系统发电。基于线性势流理论和牛顿第二定律建立波浪能装置的运动数学模型并进行求解,得到装置在不同周期和不同阻尼下的能量俘获宽度比、运动响应以及输出功率等。研究结果表明,装置的能量俘获宽度比和摆动角度幅值随周期的增大先增大后减小。在周期为4.2 s,阻尼为80000 N·m·s/rad时,装置的能量俘获宽度比达到最大值120.92%;在周期为4.4 s,阻尼为44000 N·m·s/rad时,装置的发电功率达到最大值122 kW。
Abstract
The motion response and energy capture characteristics of a ship-shaped pendulum wave energy converter was studied. The wave energy converter uses a ship-shaped pendulum as a wave absorbing floating body, which rotates around a main shaft driven by waves. The main shaft is connected to a support column fixed on the seabed, which drives the built-in mechanical power extraction system to generate electricity. Based on linear potential flow theory and Newton's second law, a mathematical model of the motion of the wave energy device was established and solved, and the energy capture width ratio, motion response, and output power of the device under different periods and different damping were obtained. The results show that the energy capture width ratio and pendulum angle amplitude of the device first increase and then decrease with the increase of the period, reaching a maximum energy capture width ratio of 120.92% at a period of 4.2 s and a damping of 80000 N·m·s/rad. The maximum generating power of the device is 122 kW at a period of 4.4 s and a damping of 44000 N·m·s/rad.
关键词
波浪能转换 /
动力响应特性 /
势流 /
能量俘获宽度比 /
共振
Key words
wave energy conversion /
dynamic response characteristics /
potential flow /
energy capture width ratio /
resonance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Y J, LI Y, HE F L, et al.Comparison study of tidal stream and wave energy technology development between China and some Western Countries[J]. Renewable and sustainable energy reviews, 2017, 76: 701-716.
[2] CLÉMENT A, MCCULLEN P, FALCÃO A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and sustainable energy reviews, 2002, 6(5): 405-431.
[3] 韩家新. 中国近海海洋: 海洋可再生能源[M]. 北京: 海洋出版社, 2015.
HAN J X.China offshore ocean: marine renewable energy [M]. Beijing: Ocean Press, 2015.
[4] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
YOU Y G, LI W, LIU W M, et al.Development status and perspective of marine energy conversion systems[J]. Automation of electric power systems, 2010, 34(14): 1-12.
[5] 叶寅. 鸭式波能装置动力摄取系统的建模与优化[D]. 北京: 中国科学院研究生院, 2011.
YE Y.Modeling and optimization of power intake system of duck wave energy device[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011.
[6] LÓPEZ I, ANDREU J, CEBALLOS S, et al. Review of wave energy technologies and the necessary power-equipment[J]. Renewable and sustainable energy reviews, 2013, 27: 413-434.
[7] WHITTAKER T, FOLLEY M.Nearshore oscillating wave surge converters and the development of Oyster[J]. Philosophical transactions Series A, Mathematical, physical, and engineering sciences, 2012, 370(1959): 345-364.
[8] CHEHAZE W, CHAMOUN D, BOU-MOSLEH C, et al.Wave roller device for power generation[J]. Procedia engineering, 2016, 145: 144-150.
[9] 刘艳娇, 彭爱武, 黄铭冶. 海洋波浪能发电装置PTO系统研究进展[J]. 太阳能学报, 2023, 44(12): 381-392.
LIU Y J, PENG A W, HUANG M Y.Research progress of pto system for wave energy converter[J]. Acta energiae solaris sinica, 2023, 44(12): 381-392.
[10] AI J X, LEE H, LIANG C W, et al.Ocean wave energy harvester with a novel power takeoff mechanism[C]//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, 2014: 1-7.
[11] LIANG C W, AI J X, ZUO L.Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier[J]. Ocean engineering, 2017, 136: 190-200.
[12] AGAMLOH E B, WALLACE A K, VON JOUANNE A.A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system[J]. Renewable energy, 2008, 33(3): 520-529.
[13] 杨绍辉, 何宏舟, 李晖, 等. 点吸收式波浪能发电技术的研究现状与展望[J]. 海洋技术学报, 2016, 35(3): 8-16.
YANG S H, HE H Z, LI H, et al.Research status and prospect of point absorber wave power generation technology[J]. Journal of ocean technology, 2016, 35(3): 8-16.
[14] 戴遗山, 段文洋. 船舶在波浪中运动的势流理论[M]. 北京: 国防工业出版社, 2008: 44-144.
DAI Y S, DUAN W Y.Potential flow theory of ship motion in waves[M]. Beijing: National Defense Industry Press, 2008: 44-144.
[15] 文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1984: 44-45.
WEN S C, YU Z W.Theory and calculation principles of ocean waves[M]. Beijing: Science Press, 1984: 44-45.
[16] 盛松伟, 张亚群, 游亚戈, 等. 大万山波浪能示范场波浪能资源测试分析[J]. 太阳能学报, 2019, 40(2): 462-465.
SHENG S W, ZHANG Y Q, YOU Y G, et al.Testing and analysis of wave energy resources in dawanshan wave energy demonstration field[J]. Acta energiae solaris sinica, 2019, 40(2): 462-465.
[17] PENALBA M, RINGWOOD J.A review of wave-to-wire models for wave energy converters[J]. Energies, 2016, 9(7): 506.
基金
广东省重点领域研发计划(2021B0202070002); 三亚崖州湾科技城科研项目(SKJC-2020-01-007)